Lithium-ion conduction of Li1.4Al0.4Ti1.6(PO4)3-GeO2 composite solid electrolyte

[1]  Licheng Sun,et al.  Cover Picture: Chemistry Future: Priorities and Opportunities from the Sustainability Perspective (ChemSusChem 1/2017) , 2017 .

[2]  N. Imanishi,et al.  High Lithium-Ion Conducting Nasicon-Type Li1+x-YAlxNbyTi2-x-Y(PO4)3 Solid Electrolyte , 2016 .

[3]  H. Ehrenberg,et al.  Evolution of microstructure and its relation to ionic conductivity in Li1 + xAlxTi2 − x(PO4)3 , 2016 .

[4]  N. Imanishi,et al.  High Lithium-Ion-Conducting NASICON-Type Li1+xAlxGeyTi2−x−y(PO4)3 Solid Electrolyte , 2016, Front. Energy Res..

[5]  Peter Lamp,et al.  Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. , 2015, Chemical reviews.

[6]  Q. Ma,et al.  Separating bulk from grain boundary Li ion conductivity in the sol–gel prepared solid electrolyte Li1.5Al0.5Ti1.5(PO4)3 , 2015 .

[7]  D. Többens,et al.  A systematic study of Nasicon-type Li1 + xMxTi2 − x(PO4)3 (M: Cr, Al, Fe) by neutron diffraction and impedance spectroscopy , 2014 .

[8]  Peng Zhang,et al.  Water-stable lithium ion conducting solid electrolyte of the Li1.4Al0.4Ti1.6 − xGex(PO4)3 system (x = 0–1.0) with NASICON-type structure , 2013 .

[9]  Yutao Li,et al.  Optimizing Li+ conductivity in a garnet framework , 2012 .

[10]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[11]  M. Hirayama,et al.  A lithium superionic conductor. , 2011, Nature materials.

[12]  K. M. Abraham,et al.  Lithium-air and lithium-sulfur batteries , 2011 .

[13]  N. Sammes,et al.  A study on lithium/air secondary batteries-Stability of the NASICON-type lithium ion conducting solid electrolyte in alkaline aqueous solutions , 2011 .

[14]  B. McCloskey,et al.  Lithium−Air Battery: Promise and Challenges , 2010 .

[15]  N. Sammes,et al.  A novel high energy density rechargeable lithium/air battery. , 2010, Chemical communications.

[16]  M. Driess,et al.  A low-temperature molecular approach to highly conductive tin-rich indium tin oxide thin films with durable electro-optical performance. , 2009, Angewandte Chemie.

[17]  Venkataraman Thangadurai,et al.  Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .

[18]  Venkataraman Thangadurai,et al.  Solid state lithium ion conductors: Design considerations by thermodynamic approach , 2002 .

[19]  Jie Fu Superionic conductivity of glass-ceramics in the system Li 2O- Al 2O 3-TiO 2-P 2O 5 , 1997 .

[20]  Takashi Uchida,et al.  High ionic conductivity in lithium lanthanum titanate , 1993 .

[21]  Y. Sadaoka,et al.  Ionic Conductivity of the Lithium Titanium Phosphate ( Li1 + X M X Ti2 − X ( PO 4 ) 3 , M = Al , Sc , Y , and La ) Systems , 1989 .

[22]  P. Bruce,et al.  The A‐C Conductivity of Polycrystalline LISICON, Li2 + 2x Zn1 − x GeO4, and a Model for Intergranular Constriction Resistances , 1983 .

[23]  John B. Goodenough,et al.  Fast Na+-ion transport in skeleton structures , 1976 .