Lithium-ion conduction of Li1.4Al0.4Ti1.6(PO4)3-GeO2 composite solid electrolyte
暂无分享,去创建一个
N. Imanishi | Y. Takeda | O. Yamamoto | Xuefu Shang | Fan Bai | D. Mori | Mitsuhiro Matsumoto | H. Nemori | Masaya Nomura | Nobuki Kyono | Daisuke Mori
[1] Licheng Sun,et al. Cover Picture: Chemistry Future: Priorities and Opportunities from the Sustainability Perspective (ChemSusChem 1/2017) , 2017 .
[2] N. Imanishi,et al. High Lithium-Ion Conducting Nasicon-Type Li1+x-YAlxNbyTi2-x-Y(PO4)3 Solid Electrolyte , 2016 .
[3] H. Ehrenberg,et al. Evolution of microstructure and its relation to ionic conductivity in Li1 + xAlxTi2 − x(PO4)3 , 2016 .
[4] N. Imanishi,et al. High Lithium-Ion-Conducting NASICON-Type Li1+xAlxGeyTi2−x−y(PO4)3 Solid Electrolyte , 2016, Front. Energy Res..
[5] Peter Lamp,et al. Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. , 2015, Chemical reviews.
[6] Q. Ma,et al. Separating bulk from grain boundary Li ion conductivity in the sol–gel prepared solid electrolyte Li1.5Al0.5Ti1.5(PO4)3 , 2015 .
[7] D. Többens,et al. A systematic study of Nasicon-type Li1 + xMxTi2 − x(PO4)3 (M: Cr, Al, Fe) by neutron diffraction and impedance spectroscopy , 2014 .
[8] Peng Zhang,et al. Water-stable lithium ion conducting solid electrolyte of the Li1.4Al0.4Ti1.6 − xGex(PO4)3 system (x = 0–1.0) with NASICON-type structure , 2013 .
[9] Yutao Li,et al. Optimizing Li+ conductivity in a garnet framework , 2012 .
[10] Jean-Marie Tarascon,et al. Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.
[11] M. Hirayama,et al. A lithium superionic conductor. , 2011, Nature materials.
[12] K. M. Abraham,et al. Lithium-air and lithium-sulfur batteries , 2011 .
[13] N. Sammes,et al. A study on lithium/air secondary batteries-Stability of the NASICON-type lithium ion conducting solid electrolyte in alkaline aqueous solutions , 2011 .
[14] B. McCloskey,et al. Lithium−Air Battery: Promise and Challenges , 2010 .
[15] N. Sammes,et al. A novel high energy density rechargeable lithium/air battery. , 2010, Chemical communications.
[16] M. Driess,et al. A low-temperature molecular approach to highly conductive tin-rich indium tin oxide thin films with durable electro-optical performance. , 2009, Angewandte Chemie.
[17] Venkataraman Thangadurai,et al. Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .
[18] Venkataraman Thangadurai,et al. Solid state lithium ion conductors: Design considerations by thermodynamic approach , 2002 .
[19] Jie Fu. Superionic conductivity of glass-ceramics in the system Li 2O- Al 2O 3-TiO 2-P 2O 5 , 1997 .
[20] Takashi Uchida,et al. High ionic conductivity in lithium lanthanum titanate , 1993 .
[21] Y. Sadaoka,et al. Ionic Conductivity of the Lithium Titanium Phosphate ( Li1 + X M X Ti2 − X ( PO 4 ) 3 , M = Al , Sc , Y , and La ) Systems , 1989 .
[22] P. Bruce,et al. The A‐C Conductivity of Polycrystalline LISICON, Li2 + 2x Zn1 − x GeO4, and a Model for Intergranular Constriction Resistances , 1983 .
[23] John B. Goodenough,et al. Fast Na+-ion transport in skeleton structures , 1976 .