Design of a surface-emitting, subwavelength metal-clad disk laser in the visible spectrum.

We analyze metal-clad disk cavities designed for nanolasers in the visible red spectrum with subwavelength device size and mode volume. Metal cladding suppresses radiation loss and supports low order modes with room temperature Q of 200 to 300. Non-degenerate single-mode operation with enhanced spontaneous emission coupling factor β is expected with the TE(011) mode that has a 0.46(λ(0)/n)(3) mode volume and Q = 210 in a device of size 0.12λ(0)(3). Threshold gain calculations show that room temperature lasing is possible using multiple GaInP/AlGaInP quantum wells as the gain medium. Placing a planar metal reflector under the cavity can enhance radiation and extraction efficiencies or increase the Q, without incurring additional metallic absorption loss. We show that the far-field radiation characteristics are strongly affected by the devices' immediate surroundings, such as changes in metal cladding thickness, even as the resonant mode profile, frequency, and Q remain the same. When the metal cladding is 1 mm thick, light radiates upward with a distinct intensity maximum at 45° when the cladding is 100 nm thick, the emitted light spreads in a near-horizontal direction.

[1]  Albert Polman,et al.  Plasmonic modes of annular nanoresonators imaged by spectrally resolved cathodoluminescence. , 2007, Nano letters.

[2]  Dirk Englund,et al.  Ultrafast photonic crystal nanocavity laser , 2006 .

[3]  Peter Blood,et al.  Comparison of experimental and theoretical GaInP quantum well gain spectra , 1997 .

[4]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[5]  S. Kita,et al.  Refractive index sensing utilizing a CW photonic crystal nanolaser and its array configuration , 2008, 2008 International Nano-Optoelectronics Workshop.

[6]  C. Weisbuch,et al.  Impact of planar microcavity effects on light extraction-Part I: basic concepts and analytical trends , 1998 .

[7]  J. Dionne,et al.  Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization , 2006 .

[8]  Fouad Karouta,et al.  Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. , 2009, Optics express.

[9]  Yeong-Her Wang,et al.  Resonant cavity light‐emitting diode , 1992 .

[10]  Jacob Scheuer,et al.  Lasing from a circular Bragg nanocavity with an ultrasmall modal volume , 2005 .

[11]  Axel Scherer,et al.  Photonic crystal laser sources for chemical detection , 2003 .

[12]  Yeshaiahu Fainman,et al.  Room-temperature subwavelength metallo-dielectric lasers , 2010 .

[13]  H. Sakaki,et al.  Multidimensional quantum well laser and temperature dependence of its threshold current , 1982 .

[14]  Yehia Massoud,et al.  Nanoscale surface plasmon based resonator using rectangular geometry , 2007 .

[15]  E. Purcell Spontaneous Emission Probabilities at Radio Frequencies , 1995 .

[16]  Shu-Wei Chang,et al.  Fundamental Formulation for Plasmonic Nanolasers , 2009, IEEE Journal of Quantum Electronics.

[17]  Toshihiko Baba,et al.  Photonic crystals and microdisk cavities based on GaInAsP-InP system , 1997 .

[18]  T. Asano,et al.  High-Q photonic nanocavity in a two-dimensional photonic crystal , 2003, Nature.

[19]  Hiroshi Nakanishi,et al.  Optical Properties of (AlxGa1-x)0.5In0.5P Quaternary Alloys , 1994 .

[20]  Hideki T. Miyazaki,et al.  Controlled plasmon resonance in closed metal/insulator/metal nanocavities , 2006 .

[21]  P. Deotare,et al.  High quality factor photonic crystal nanobeam cavities , 2009, 0901.4158.

[22]  A. Bouhelier,et al.  Submicrometer in-plane integrated surface plasmon cavities. , 2007, Nano letters.

[23]  Shu-Wei Chang,et al.  Normal modes for plasmonic nanolasers with dispersive and inhomogeneous media. , 2009, Optics letters.

[24]  M. Smit,et al.  Lasing in metallic-coated nanocavities , 2007 .

[25]  G. Hunziker,et al.  Gain measurements on one, two, and three strained GaInP quantum well laser diodes , 1994 .

[26]  G. S. Solomon,et al.  Near-IR subwavelength microdisk lasers , 2008, 0810.2748.

[27]  Yong-hee Lee,et al.  Vertical beaming of wavelength-scale photonic crystal resonators , 2006, physics/0604019.

[28]  W. R. Hunter,et al.  Comments on the Optical Constants of Metals and an Introduction to the Data for Several Metals , 1997 .

[29]  Yeshaiahu Fainman,et al.  Low threshold gain metal coated laser nanoresonators. , 2008, Optics letters.

[30]  Shota Kita,et al.  Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser. , 2007, Optics express.

[31]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .

[32]  Shu-Wei Chang,et al.  Theory of plasmonic fabry-perot nanolasers. , 2010, Optics express.

[33]  K. Inoshita,et al.  Fabrication of GaInAsP/InP photonic Crystal lasers by ICP etching and control of resonant mode in point and line composite defects , 2003 .

[34]  Axel Scherer,et al.  High frequency oscillation in photonic crystal nanolasers , 2004 .

[35]  Jean-Michel Gérard,et al.  Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities , 1999 .

[36]  Steven G. Johnson,et al.  Improving accuracy by subpixel smoothing in the finite-difference time domain. , 2006, Optics letters.

[37]  Seung‐Man Yang,et al.  Optofluidic integration of a photonic crystal nanolaser. , 2008, Optics express.

[38]  Axel Scherer,et al.  Visible submicron microdisk lasers , 2007 .

[39]  Ming C. Wu,et al.  Subwavelength Metal-optic Semiconductor Nanopatch Lasers References and Links , 2022 .

[40]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[41]  R. A. Matula Electrical resistivity of copper, gold, palladium, and silver , 1979 .

[42]  David A. B. Miller,et al.  Device Requirements for Optical Interconnects to Silicon Chips , 2009, Proceedings of the IEEE.