A Note on Solving Problem 7 of the SIAM 100-Digit Challenge Using C-XSC

This paper presents the usage of a reliable parallel linear system solver to compute the solution of problem 7 of the SIAM 100-digit challenge. Tests were executed on two different clusters: ALICEnext in Wuppertal and XC1 in Karlsruhe. An approach to find all the 100 digits of the exact solution with maximum accuracy is also discussed and tested.

[1]  Stan Wagon,et al.  The SIAM 100-Digit Challenge - A study in High-Accuracy Numerical Computing , 2004, The SIAM 100-Digit Challenge.

[2]  Wolfram Luther,et al.  Numerical Software with Result Verification , 2004, Lecture Notes in Computer Science.

[3]  Markus Grimmer Selbstverifizierende mathematische Softwarewerkzeuge im High Performance Computing , 2007 .

[4]  Donald Ervin Knuth,et al.  The Art of Computer Programming, Volume II: Seminumerical Algorithms , 1970 .

[5]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .

[6]  W. Miranker,et al.  The arithmetic of the digital computer: A new approach , 1986 .

[7]  Walter Krämer,et al.  Numerical Toolbox for Verified Computing II: Advanced Numerical Problems , 2006 .

[8]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[9]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[10]  Wolfram Luther,et al.  Numerical Validation in Current Hardware Architectures , 2009, Lecture Notes in Computer Science.

[11]  Ronald Cramer,et al.  Public Key Cryptography - PKC 2008, 11th International Workshop on Practice and Theory in Public-Key Cryptography, Barcelona, Spain, March 9-12, 2008. Proceedings , 2008, Public Key Cryptography.

[12]  Michael Zimmer,et al.  Fast (Parallel) Dense Linear Interval Systems Solvers in C-XSC Using Error Free Transformations and BLAS , 2008, Numerical Validation in Current Hardware Architectures.

[13]  Walter Krämer,et al.  An MPI Extension for Verified Numerical Computations in Parallel Environments , 2007, CSC.

[14]  Jack Dongarra,et al.  ScaLAPACK Users' Guide , 1987 .

[15]  Siegfried M. Rump,et al.  A parallel algorithm for accurate dot product , 2008, Parallel Comput..

[16]  Gerhard Robert Joubert Parallel Computing: Software Technology, Algorithms, Architectures and Applications, PARCO 2003, Dresden, Germany , 2004, PARCO.

[17]  Michael Zimmer,et al.  Fast (Parallel) Dense Linear System Solvers in C-XSC Using Error Free Transformations and BLAS , 2009, Numerical Validation in Current Hardware Architectures.

[18]  Mariana Luderitz Kolberg,et al.  Improving the Performance of a Verified Linear System Solver Using Optimized Libraries and Parallel Computation , 2008, VECPAR.

[19]  Jack Dongarra,et al.  LAPACK Users' Guide, 3rd ed. , 1999 .

[20]  Robert M. Kirby,et al.  Parallel Scientific Computing in C++ and MPI , 2003 .

[21]  Luiz Gustavo Fernandes,et al.  Dense Linear System: A Parallel Self-verified Solver , 2008, International Journal of Parallel Programming.

[22]  G. Corliss,et al.  C-Xsc: A C++ Class Library for Extended Scientific Computing , 1993 .

[23]  Siegfried M. Rump,et al.  Accurate Sum and Dot Product , 2005, SIAM J. Sci. Comput..

[24]  Peter Kornerup,et al.  Semantics for exact floating point operations , 1991, [1991] Proceedings 10th IEEE Symposium on Computer Arithmetic.

[25]  Tiarajú Asmuz Diverio,et al.  Selfverifying Solvers for Linear Systems of Equations in C-XSC , 2003, PPAM.

[26]  Walter Krämer,et al.  C-XSC 2.0: A C++ Library for Extended Scientific Computing , 2003, Numerical Software with Result Verification.

[27]  Markus Grimmer,et al.  Selbstverifizierende mathematische Softwarewerkzeuge im High Performance Computing - Konzeption, Entwicklung und Analyse am Beispiel der parallelen verifizierten Lösung linearer Fredholmscher Integralgleichungen zweiter Art , 2007 .

[28]  Ulrich Kulisch,et al.  Numerical Toolbox for Verified Computing I: Basic Numerical Problems Theory, Algorithms, and Pascal-Xsc Programs , 1994 .

[29]  Walter Krämer,et al.  An Accurate an Efficient Selfverifying Solver for Systems with Banded Coefficient Matrix , 2003, PARCO.

[30]  J. Borwein The SIAM 100-Digit challenge: a study in high-accuracy numerical computing , 1987 .

[31]  T. J. Dekker,et al.  A floating-point technique for extending the available precision , 1971 .

[32]  James Demmel,et al.  LAPACK Users' Guide, Third Edition , 1999, Software, Environments and Tools.

[33]  Siegfried M. Rump,et al.  Kleine Fehlerschranken bei Matrixproblemen , 1980 .

[34]  N. Trefethen A Hundred-dollar Hundred-digit Challenge , 2002 .