Length-tension relationship of vascular smooth muscle in single arterioles.

Longitudinal response gradients in the microcirculation may in part be explained in terms of the length-tension relationship of vascular smooth muscle at different points along the vascular tree. To test this hypothesis, four branching orders of arterial vessels (20-80 microns ID) were dissected from the hamster cheek pouch and cannulated with concentric micropipettes. Intraluminal pressure was monitored with a servo-null micropipette, and arteriolar dimensions were measured using a videomicrometer. All arterioles developed spontaneous tone in physiological saline solution. Pressure-diameter curves were recorded for maximally activated vessels and for passive vessels. Maximal active wall tension varied nearly threefold, but maximal active medial wall stress (approximately 4 x 10(6) dyn/cm2) varied only approximately 20% between the different vessel orders. These data support the concept that smooth muscle cells from vessels of different sizes are mechanically similar but do not completely explain the longitudinal response gradients reported in the cheek pouch microcirculation. An analysis of the effect of arteriolar wall buckling suggests that the luminal folds that develop at short vessel radii may broaden the peak of the active stress-length curve and extend the pressure range over which arterioles are most sensitive to physical and chemical stimuli.