On minimal kernels and Levi currents on weakly complete complex manifolds

A complex manifold X is weakly complete if it admits a continuous plurisubharmonic exhaustion function φ. The minimal kernels ΣkX , k ∈ [0,∞] (the loci where are all C plurisubharmonic exhaustion functions fail to be strictly plurisubharmonic), introduced by Slodkowski-Tomassini, and the Levi currents, introduced by Sibony, are both concepts aimed at measuring how far X is from being Stein. We compare these notions, prove that all Levi currents are supported by all the ΣkX ’s, and give sufficient conditions for points in ΣkX to be in the support of some Levi current. When X is a surface and φ can be chosen analytic, building on previous work by the second author, Slodkowski, and Tomassini, we prove the existence of a Levi current precisely supported on Σ∞X , and give a classification of Levi currents on X. In particular, unless X is a modification of a Stein space, every point in X is in the support of some Levi current.

[1]  Samuele Mongodi Weakly complete domains in Grauert-type surfaces , 2018, Annali di Matematica Pura ed Applicata (1923 -).

[2]  R. Narasimhan The Levi problem for complex spaces , 1961 .

[3]  B. Berndtsson,et al.  The ¯∂-equation on a positive current , 2002 .

[4]  Toshio Nishino L'Existence d'une Fonction Analytique sur une Variété Analytique Complexe à Deux Dimensions , 1982 .

[5]  A. Hirschowitz Le problème de Lévi pour les espaces homogènes , 1975 .

[6]  R. Richberg Stetige streng pseudokonvexe Funktionen , 1967 .

[7]  G. Tomassini,et al.  Minimal kernels of weakly complete spaces , 2004 .

[8]  G. Tomassini,et al.  Minimal Kernels and Compact Analytic Objects in Complex Surfaces , 2019, Advancements in Complex Analysis.

[9]  G. Tomassini,et al.  On defining functions for unbounded pseudoconvex domains , 2014, 1405.2250.

[10]  N. Sibony Levi problem in complex manifolds , 2016, 1610.07768.

[11]  T. Ohsawa,et al.  Bounded p.s.h. functions and pseudoconvexity in Kähler manifold , 1998, Nagoya Mathematical Journal.

[12]  G. Tomassini,et al.  On weakly complete surfaces , 2015 .

[13]  H. Rossi The Local Maximum Modulus Principle , 1960 .

[14]  N. Shcherbina On the polynomial hull of a graph , 1993 .

[15]  Pull-back of currents by holomorphic maps , 2006, math/0606248.

[16]  R. Narasimhan The Levi problem for complex spaces II , 1962 .

[17]  N. Sibony Pfaff systems, currents and hulls , 2015, 1509.01790.

[18]  Z. Slodkowski,et al.  Domains with a continuous exhaustion in weakly complete surfaces , 2019, Mathematische Zeitschrift.

[19]  H. Grauert On Levi's Problem and the Imbedding of Real-Analytic Manifolds , 1958 .

[20]  G. Tomassini,et al.  Some properties of Grauert type surfaces , 2016, 1611.05637.

[21]  Z. Slodkowski Local maximum property and q-plurisubharmonic functions in uniform algebras , 1986 .