Wannier-function based scattering-matrix formalism for photonic crystal circuitry

A guided-mode scattering matrix approach to photonic crystal integrated devices, based on the expansion of the electromagnetic field in Wannier functions is presented and its applicability to large-scale photonic circuits is demonstrated. In particular, we design two components typically used in wavelength division multi/demultiplexing applications, namely, a directional coupler and a Mach-Zehnder interferometer, and we analyze the transmission spectra as a function of the coupler length and/or delay line length, respectively. These examples demonstrate that by cascading basic functional elements, large-scale circuits can be accurately described and efficiently designed with minimal numerical effort.

[1]  Tsutomu Kitoh,et al.  Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations , 1996 .

[2]  N. Marzari,et al.  Maximally localized generalized Wannier functions for composite energy bands , 1997, cond-mat/9707145.

[3]  M. Koshiba,et al.  Tunable light propagation in photonic Crystal coupler filled with liquid Crystal , 2005, IEEE Photonics Technology Letters.

[4]  M. Koshiba,et al.  Time-domain beam propagation method and its application to photonic crystal circuits , 2000, Journal of Lightwave Technology.

[5]  Kurt Busch,et al.  Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum , 1999 .

[6]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[7]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[8]  S. Noda,et al.  Full three-dimensional photonic bandgap crystals at near-infrared wavelengths , 2000, Science.

[9]  Kurt Busch,et al.  Tunable photonic crystal circuits: concepts and designs based on single-pore infiltration. , 2004, Optics letters.

[10]  Kurt Busch,et al.  PHOTONIC BAND GAP FORMATION IN CERTAIN SELF-ORGANIZING SYSTEMS , 1998 .

[11]  Shanhui Fan,et al.  Stopping light all optically. , 2004, Physical review letters.

[12]  Hiroaki Misawa,et al.  Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin , 1999 .

[13]  G. Wannier The Structure of Electronic Excitation Levels in Insulating Crystals , 1937 .

[14]  R. G. Denning,et al.  Fabrication of photonic crystals for the visible spectrum by holographic lithography , 2000, Nature.

[15]  M. Notomi,et al.  Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. , 2001, Physical review letters.

[16]  D. Dobson An Efficient Method for Band Structure Calculations in 2D Photonic Crystals , 1999 .

[17]  Kurt Busch,et al.  The Wannier function approach to photonic crystal circuits , 2003 .

[18]  Matteo Cherchi Wavelength-flattened directional couplers: a geometrical approach. , 2003, Applied optics.

[19]  Stefan L. Schweizer,et al.  Rewritable photonic circuits , 2006 .

[20]  A. Scherer,et al.  Design and fabrication of silicon photonic crystal optical waveguides , 2000, Journal of Lightwave Technology.

[21]  Steven G. Johnson,et al.  All-angle negative refraction without negative effective index , 2002 .

[22]  Y. Vlasov,et al.  Losses in single-mode silicon-on-insulator strip waveguides and bends. , 2004, Optics express.

[23]  Dirk Englund,et al.  Controlled Phase Shifts with a Single Quantum Dot , 2008, Science.

[24]  Kurt Busch,et al.  Photonic band structure theory: assessment and perspectives , 2002 .

[25]  E. Sargent,et al.  Efficient design and optimization of photonic crystal waveguides and couplers: The Interface Diffraction Method. , 2005, Optics express.

[26]  Chan,et al.  Existence of a photonic gap in periodic dielectric structures. , 1990, Physical review letters.

[27]  Vos,et al.  Preparation of photonic crystals made of air spheres in titania , 1998, Science.

[28]  R. J. Potton,et al.  Reciprocity in optics , 2004 .

[29]  D. Saxon Tensor Scattering Matrix for the Electromagnetic Field , 1955 .

[30]  Makoto Okano,et al.  Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs , 2002 .

[31]  S. John,et al.  Quantum electrodynamics near a photonic band gap: Photon bound states and dressed atoms. , 1990, Physical review letters.

[32]  Ekmel Ozbay,et al.  Coupling and phase analysis of cavity structures in two-dimensional photonic crystals , 2005 .

[33]  J. Joannopoulos,et al.  Accurate theoretical analysis of photonic band-gap materials. , 1993, Physical review. B, Condensed matter.

[34]  Masanori Ozaki,et al.  Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal , 1999 .

[35]  Walter Kohn,et al.  Analytic Properties of Bloch Waves and Wannier Functions , 1959 .

[36]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[37]  N. Marzari,et al.  Maximally localized Wannier functions for entangled energy bands , 2001, cond-mat/0108084.

[38]  Masaya Notomi,et al.  Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap , 2000 .

[39]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[40]  Katsumi Yoshino,et al.  Tunable light propagation in Y-shaped waveguides in two-dimensional photonic crystals utilizing liquid crystals as linear defects , 2003 .

[41]  S. B. Cohn,et al.  History of Microwave Passive Components with Particular Attention to Directional Couplers , 1984 .

[42]  Bradley K. Smith,et al.  A three-dimensional photonic crystal operating at infrared wavelengths , 1998, Nature.

[43]  S. Mingaleev,et al.  Scattering matrix approach to large-scale photonic crystal circuits. , 2003, Optics letters.

[44]  J. M. Johnson,et al.  Genetic algorithms in electromagnetics , 1996, IEEE Antennas and Propagation Society International Symposium. 1996 Digest.

[45]  J. Joannopoulos,et al.  High Transmission through Sharp Bends in Photonic Crystal Waveguides. , 1996, Physical review letters.

[46]  Joseph W. Haus,et al.  Photonic Band Gap Structures , 2004 .

[47]  M. Sorel,et al.  Photonic crystal and photonic wire nano-photonics based on silicon-on-insulator , 2006 .

[48]  S. Noda,et al.  Recent Progresses and Future Prospects of Two- and Three-Dimensional Photonic Crystals , 2006, Journal of Lightwave Technology.

[49]  Yoshinori Tanaka,et al.  Experimental demonstration of complete photonic band gap in two-dimensional photonic crystal slabs , 2005 .

[50]  P. Dumon,et al.  Basic structures for photonic integrated circuits in Silicon-on-insulator. , 2004, Optics express.

[51]  Quang,et al.  Resonant nonlinear dielectric response in a photonic band gap material. , 1996, Physical review letters.

[52]  E. Kriezis,et al.  Analysis of tunable photonic crystal directional couplers , 2006 .

[53]  Steven G. Johnson,et al.  Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. , 2001, Optics express.

[54]  A JOUBNAL,et al.  Reciprocity , 1899, The Hospital.

[55]  Yasuhiko Arakawa,et al.  Si Photonic Wire Waveguide Devices , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[56]  Shanhui Fan,et al.  Demonstration of systematic photonic crystal device design and optimization by low-rank adjustments: an extremely compact mode separator. , 2005, Optics letters.

[57]  Nikos Hadjichristidis,et al.  Polymer‐Based Photonic Crystals , 2001 .

[58]  Harry J. R. Dutton,et al.  Understanding Optical Communications , 1998 .

[59]  P. Dumon,et al.  Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology , 2005, Journal of Lightwave Technology.

[60]  Y. Hibino Silica-Based Planar Lightwave Circuits and Their Applications , 2003 .

[61]  Steven G. Johnson,et al.  Photonic-crystal slow-light enhancement of nonlinear phase sensitivity , 2002 .

[62]  Thomas F. Krauss,et al.  Photonic crystals in the optical regime — past, present and future , 1999 .

[63]  Zheng Wang,et al.  Optical circulators in two-dimensional magneto-optical photonic crystals. , 2005 .

[64]  Thomas F. Krauss,et al.  Planar photonic crystal waveguide devices for integrated optics , 2003 .

[65]  Masanori Koshiba,et al.  Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers , 2001 .

[66]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[67]  Masaya Notomi,et al.  Superprism Phenomena in Photonic Crystals , 1998 .

[68]  J. Nacher,et al.  A novel design of dielectric perfect invisibility devices , 2007, 0711.1122.

[69]  M. Okano,et al.  GaAs-based two-dimensional photonic crystal slab ring resonator consisting of a directional coupler and bent waveguides , 2007 .

[70]  M. Schillinger,et al.  Wannier basis design and optimization of a photonic crystal waveguide crossing , 2005, IEEE Photonics Technology Letters.

[71]  M. Wegener,et al.  Periodic nanostructures for photonics , 2007 .

[72]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[73]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[74]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[75]  S. John Photonic band gap materials: a semiconductor for light , 2001, CLEO 2001.

[76]  Matteo Cherchi Design scheme for Mach-Zehnder interferometric coarse wavelength division multiplexing splitters and combiners , 2006 .

[77]  Carretera de Valencia,et al.  The finite element method in electromagnetics , 2000 .

[78]  Kurt Busch,et al.  Silicon‐Based Photonic Crystals , 2001 .

[79]  K. Busch,et al.  Photonic band structure computations. , 2001, Optics express.

[80]  Min Gu,et al.  Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization. , 2002, Optics letters.

[81]  Edward H. Sargent,et al.  Photonic crystal heterostructures and interfaces , 2006 .