The Visual Exploration of Insurance Data in Google Earth

Visualisation and geovisualisation techniques can both complement and help communicate the results of GIS and other analyses in the exploration of multivariate datasets and may provide insights and solutions for managing exposure and potential loss. Graphical techniques and the use of geobrowsers such as Google Earth are also being used in a communicative role to engage a variety of different audiences within insurance companies with information about policies, exposure and potential losses. In this paper, we focus on one particular geo-browser, Google Earth, which provides access to a rich array of datasets including aerial imagery, roads, administrative boundaries and photographs and, importantly, allows additional data to be added through the welldocumented KML format.

[1]  Keith C. Clarke,et al.  Interactive Visual Exploration of a Large Spatio-temporal Dataset: Reflections on a Geovisualization Mashup. , 2007, IEEE Transactions on Visualization and Computer Graphics.

[2]  Jeffrey Heer,et al.  Animated Transitions in Statistical Data Graphics , 2007, IEEE Transactions on Visualization and Computer Graphics.

[3]  Martin Charlton,et al.  A Mark 1 Geographical Analysis Machine for the automated analysis of point data sets , 1987, Int. J. Geogr. Inf. Sci..

[4]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[5]  Jason Dykes,et al.  Cartographic visualization: exploratory spatial data analysis with local indicators of spatial association using Tcl/Tk and cdv , 1998 .

[6]  Bettina Speckmann,et al.  On rectangular cartograms , 2004, Comput. Geom..

[7]  Keith C. Clarke,et al.  Mashup cartography: cartographic issues of using Google Earth for tag maps , 2007 .

[8]  Alan M. MacEachren,et al.  An Open GeoSpatial Standards-Enabled Google Earth Application to Support Crisis Management , 2007 .

[9]  M. Goodchild Citizens as sensors: the world of volunteered geography , 2007 .

[10]  Bettina Speckmann,et al.  On rectangular cartograms , 2007 .

[11]  Gennady L. Andrienko,et al.  Interactive maps for visual data exploration , 1999, Int. J. Geogr. Inf. Sci..

[12]  Howard Kunreuther,et al.  An Introduction to Catastrophe Models and Insurance , 2005 .

[13]  Alan M. MacEachren,et al.  Constructing knowledge from multivariate spatiotemporal data: integrating geographical visualization with knowledge discovery in database methods , 1999, Int. J. Geogr. Inf. Sci..

[14]  Mark Gahegan,et al.  Beyond Tools: Visual Support for the Entire Process of GIScience , 2005 .

[15]  Jason Dykes,et al.  Exploring spatial data representation with dynamic graphics , 1997 .

[16]  Christopher C. Miller,et al.  A Beast in the Field: The Google Maps Mashup as GIS/2 , 2006, Cartogr. Int. J. Geogr. Inf. Geovisualization.

[17]  Keith C. Clarke,et al.  Interactive Tag Maps and Tag Clouds for the Multiscale Exploration of Large Spatio-temporal Datasets , 2007, 2007 11th International Conference Information Visualization (IV '07).

[18]  Antony Unwin,et al.  SPIDER - an interactive statistical tool for the analysis of spatially distributed data , 1990, Int. J. Geogr. Inf. Sci..

[19]  Jarke J. van Wijk,et al.  Squarified Treemaps , 2000, VisSym.