Analysis of Homeodomain Specificities Allows the Family-wide Prediction of Preferred Recognition Sites

[1]  E. Lewis A gene complex controlling segmentation in Drosophila , 1978, Nature.

[2]  Pierre Gönczy,et al.  A single amino acid can determine the DNA binding specificity of homeodomain proteins , 1989, Cell.

[3]  Roger Brent,et al.  DNA specificity of the bicoid activator protein is determined by homeodomain recognition helix residue 9 , 1989, Cell.

[4]  Carl O. Pabo,et al.  Crystal structure of an engrailed homeodomain-DNA complex at 2.8 Å resolution: A framework for understanding homeodomain-DNA interactions , 1990, Cell.

[5]  W. Gehring,et al.  The interaction with DNA of wild‐type and mutant fushi tarazu homeodomains. , 1990, The EMBO journal.

[6]  T. D. Schneider,et al.  Sequence logos: a new way to display consensus sequences. , 1990, Nucleic acids research.

[7]  Cynthia Wolberger,et al.  Crystal structure of a MAT alpha 2 homeodomain-operator complex suggests a general model for homeodomain-DNA interactions. , 1991, Cell.

[8]  S. Ekker,et al.  Differential DNA sequence recognition is a determinant of specificity in homeotic gene action. , 1992, The EMBO journal.

[9]  G. Stormo,et al.  Identifying constraints on the higher-order structure of RNA: continued development and application of comparative sequence analysis methods. , 1992, Nucleic acids research.

[10]  AC Tose Cell , 1993, Cell.

[11]  B. Sun,et al.  The degree of variation in DNA sequence recognition among four Drosophila homeotic proteins. , 1994, The EMBO journal.

[12]  Kurt Wüthrich,et al.  Homeodomain-DNA recognition , 1994, Cell.

[13]  W. Gehring,et al.  Homeodomain proteins. , 1994, Annual review of biochemistry.

[14]  P. Sharp,et al.  Structure-based design of transcription factors. , 1995, Science.

[15]  E. Bertolino,et al.  A Novel Homeobox Protein Which Recognizes a TGT Core and Functionally Interferes with a Retinoid-responsive Motif (*) , 1995, The Journal of Biological Chemistry.

[16]  R. Sauer,et al.  Specificity of minor-groove and major-groove interactions in a homeodomain-DNA complex. , 1995, Biochemistry.

[17]  L. Brocchieri,et al.  Pbx modulation of Hox homeodomain amino-terminal arms establishes different DNA-binding specificities across the Hox locus , 1996, Molecular and cellular biology.

[18]  C. Wolberger Homeodomain interactions. , 1996, Current opinion in structural biology.

[19]  G. Tell,et al.  A molecular code dictates sequence‐specific DNA recognition by homeodomains. , 1996, The EMBO journal.

[20]  T. Hazbun,et al.  Site-specific recognition by an isolated DNA-binding domain of the sine oculis protein. , 1997, Biochemistry.

[21]  Sarah E. Ades,et al.  Engrailed (Gln50-->Lys) homeodomain-DNA complex at 1.9 A resolution: structural basis for enhanced affinity and altered specificity. , 1997, Structure.

[22]  M. Nirenberg,et al.  Interactions of the vnd/NK-2 homeodomain with DNA by nuclear magnetic resonance spectroscopy: basis of binding specificity. , 1997, Biochemistry.

[23]  E. Fraenkel,et al.  Engrailed homeodomain-DNA complex at 2.2 A resolution: a detailed view of the interface and comparison with other engrailed structures. , 1998, Journal of molecular biology.

[24]  Ernest Fraenkel,et al.  Comparison of X-ray and NMR structures for the Antennapedia homeodomain–DNA complex , 1998, Nature Structural &Molecular Biology.

[25]  A. Hochschild,et al.  Conversion of the omega subunit of Escherichia coli RNA polymerase into a transcriptional activator or an activation target. , 1998, Genes & development.

[26]  M. Cleary,et al.  Structure of a HoxB1–Pbx1 Heterodimer Bound to DNA Role of the Hexapeptide and a Fourth Homeodomain Helix in Complex Formation , 1999, Cell.

[27]  Structural basis of Hox specificity , 1999, Nature Structural Biology.

[28]  Gary D. Stormo,et al.  Identifying DNA and protein patterns with statistically significant alignments of multiple sequences , 1999, Bioinform..

[29]  R. Mann,et al.  The control of trunk Hox specificity and activity by Extradenticle. , 1999, Genes & development.

[30]  Aneel K. Aggarwal,et al.  Structure of a DNA-bound Ultrabithorax–Extradenticle homeodomain complex , 1999, Nature.

[31]  Chen Zhao,et al.  Reprogrammable Recognition Codes in Bicoid Homeodomain-DNA Interaction , 2000, Molecular and Cellular Biology.

[32]  H. Zhong,et al.  Altering the DNA-binding specificity of the yeast Matalpha 2 homeodomain protein. , 2001, The Journal of biological chemistry.

[33]  A D Baxevanis,et al.  Molecular evolution of the homeodomain family of transcription factors. , 2001, Nucleic acids research.

[34]  J. Geiger,et al.  Crystal structure of the Msx-1 homeodomain/DNA complex. , 2001, Biochemistry.

[35]  A. Vershon,et al.  Altering the DNA-binding Specificity of the Yeast Matα2 Homeodomain Protein* , 2001, The Journal of Biological Chemistry.

[36]  Michael R. Green,et al.  Expressing the human genome , 2001, Nature.

[37]  Panayiotis V Benos,et al.  Probabilistic code for DNA recognition by proteins of the EGR family. , 2002, Journal of molecular biology.

[38]  Hisato Kondoh,et al.  Six3-mediated auto repression and eye development requires its interaction with members of the Groucho-related family of co-repressors. , 2002, Development.

[39]  Alexander E. Kel,et al.  TRANSFAC®: transcriptional regulation, from patterns to profiles , 2003, Nucleic Acids Res..

[40]  Saurabh Sinha,et al.  A probabilistic method to detect regulatory modules , 2003, ISMB.

[41]  S. Salzberg,et al.  Computational identification of developmental enhancers: conservation and function of transcription factor binding-site clusters in Drosophila melanogaster and Drosophila pseudoobscura , 2004, Genome Biology.

[42]  J. Fak,et al.  Transcriptional Control in the Segmentation Gene Network of Drosophila , 2004, PLoS biology.

[43]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[44]  Robert C. Edgar,et al.  MUSCLE: a multiple sequence alignment method with reduced time and space complexity , 2004, BMC Bioinformatics.

[45]  Casey M. Bergman,et al.  Drosophila DNase I footprint database: a systematic genome annotation of transcription factor binding sites in the fruitfly, Drosophila melanogaster , 2005, Bioinform..

[46]  H. McNeill,et al.  Iroquois transcription factors recognize a unique motif to mediate transcriptional repression in vivo. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[47]  M. Brodsky,et al.  A bacterial one-hybrid system for determining the DNA-binding specificity of transcription factors , 2005, Nature Biotechnology.

[48]  Joseph C. Pearson,et al.  Modulating Hox gene functions during animal body patterning , 2005, Nature Reviews Genetics.

[49]  G. Stormo,et al.  Combining SELEX with quantitative assays to rapidly obtain accurate models of protein–DNA interactions , 2005, Nucleic acids research.

[50]  S. Wolfe,et al.  Identifying DNA sequences recognized by a transcription factor using a bacterial one-hybrid system , 2006, Nature Protocols.

[51]  Krishanu Mukherjee,et al.  Comprehensive Analysis of Animal TALE Homeobox Genes: New Conserved Motifs and Cases of Accelerated Evolution , 2007, Journal of Molecular Evolution.

[52]  Michael A. Crickmore,et al.  Functional Specificity of a Hox Protein Mediated by the Recognition of Minor Groove Structure , 2007, Cell.

[53]  Panayiotis V. Benos,et al.  Inferring protein-DNA dependencies using motif alignments and mutual information , 2007, ISMB/ECCB.

[54]  Manolis Kellis,et al.  Reliable prediction of regulator targets using 12 Drosophila genomes. , 2007, Genome research.

[55]  D. W. Knowles,et al.  Transcription Factors Bind Thousands of Active and Inactive Regions in the Drosophila Blastoderm , 2008, PLoS biology.

[56]  M. Noyes,et al.  A systematic characterization of factors that regulate Drosophila segmentation via a bacterial one-hybrid system , 2008, Nucleic acids research.