On Monotonicity-Preserving Stabilized Finite Element Approximations of Transport Problems

The aim of this work is to design monotonicity-preserving stabilized finite element techniques for transport problems as a blend of linear and nonlinear (shock-capturing) stabilization. As linear stabilization, we consider and analyze a novel symmetric projection stabilization technique based on a local Scott--Zhang projector. Next, we design a weighting of the aforementioned linear stabilization such that, when combined with a finite element discretization enjoying a discrete maximum principle (usually attained via nonlinear stabilization), it does not spoil these monotonicity properties. Then, we propose novel nonlinear stabilization schemes in the form of an artificial viscosity method where the amount of viscosity is proportional to gradient jumps at either finite element boundaries or nodes. For the nodal scheme, we prove a discrete maximum principle for time-dependent multidimensional transport problems. Numerical experiments support the numerical analysis and we show that the resulting methods prov...

[1]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[2]  Jean-Luc Guermond,et al.  Entropy viscosity method for nonlinear conservation laws , 2011, J. Comput. Phys..

[3]  R. Codina Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods , 2000 .

[4]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[5]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[6]  J. Guermond Stabilization of Galerkin approximations of transport equations by subgrid modelling , 1999 .

[7]  Elaine S. Oran,et al.  Numerical Simulation of Reactive Flow , 1987 .

[8]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[9]  Erik Burman,et al.  On nonlinear artificial viscosity, discrete maximum principle and hyperbolic conservation laws , 2007 .

[10]  Volker John,et al.  On spurious oscillations at layers diminishing (SOLD) methods for convection–diffusion equations: Part I – A review , 2007 .

[11]  Gabriel R. Barrenechea,et al.  A local projection stabilization finite element method with nonlinear crosswind diffusion for convection-diffusion-reaction equations , 2012 .

[12]  Erik Burman,et al.  Local Projection Stabilization for the Oseen Problem and its Interpretation as a Variational Multiscale Method , 2006, SIAM J. Numer. Anal..

[13]  R. D. Richtmyer,et al.  A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .

[14]  Anders Szepessy,et al.  Convergence of a shock-capturing streamline diffusion finite element method for a scalar conservation law in two space dimensions , 1989 .

[15]  Thomas J. R. Hughes,et al.  A Petrov-Galerkin finite element method for convection-dominated flows: An accurate upwinding technique for satisfying the maximum principle☆ , 1985 .

[16]  P. Hansbo,et al.  Edge stabilization for Galerkin approximations of convection?diffusion?reaction problems , 2004 .

[17]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[18]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[19]  Alexandre Ern,et al.  Nonlinear diffusion and discrete maximum principle for stabilized Galerkin approximations of the convection-diffusion-reaction equation , 2002 .

[20]  Volker John,et al.  On spurious oscillations at layers diminishing (SOLD) methods for convection–diffusion equations: Part II – Analysis for P1 and Q1 finite elements , 2008 .

[21]  Alexandre Ern,et al.  Stabilized Galerkin approximation of convection-diffusion-reaction equations: discrete maximum principle and convergence , 2005, Math. Comput..

[22]  S. Badia On stabilized finite element methods based on the Scott-Zhang projector: circumventing the inf-sup condition for the Stokes problem , 2012 .

[23]  Ramon Codina,et al.  A discontinuity-capturing crosswind-dissipation for the finite element solution of the convection-diffusion equation , 1993 .

[24]  Gunar Matthies,et al.  A UNIFIED CONVERGENCE ANALYSIS FOR LOCAL PROJECTION STABILISATIONS APPLIED TO THE OSEEN PROBLEM , 2007 .

[25]  Lilia Krivodonova,et al.  Limiters for high-order discontinuous Galerkin methods , 2007, J. Comput. Phys..

[26]  Vivette Girault,et al.  A high order term-by-term stabilization solver for incompressible flow problems , 2013 .

[27]  Stefan Turek,et al.  Flux-corrected transport : principles, algorithms, and applications , 2005 .

[28]  R. Codina,et al.  A finite element formulation for the Stokes problem allowing equal velocity-pressure interpolation , 1997 .

[29]  A. Galeão,et al.  A consistent approximate upwind Petrov—Galerkin method for convection-dominated problems , 1988 .

[30]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[31]  R. LeVeque High-resolution conservative algorithms for advection in incompressible flow , 1996 .

[32]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[33]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[34]  Claes Johnson,et al.  On the convergence of a finite element method for a nonlinear hyperbolic conservation law , 1987 .

[35]  Santiago Badia,et al.  On an unconditionally convergent stabilized finite element approximation of resistive magnetohydrodynamics , 2013, J. Comput. Phys..

[36]  R. Codina,et al.  Time dependent subscales in the stabilized finite element approximation of incompressible flow problems , 2007 .

[37]  Santiago Badia,et al.  Approximation of the inductionless MHD problem using a stabilized finite element method , 2011, J. Comput. Phys..

[38]  Gert Lube,et al.  Residual-based stabilized higher-order FEM for advection-dominated problems , 2006 .

[39]  Peter Hansbo,et al.  On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws , 1990 .

[40]  Erik Burman,et al.  Consistent SUPG-method for transient transport problems: Stability and convergence , 2010 .

[41]  P. LeFloch,et al.  Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves , 2002 .

[42]  Roland Becker,et al.  A finite element pressure gradient stabilization¶for the Stokes equations based on local projections , 2001 .

[43]  A. Galeão,et al.  Feedback Petrov-Galerkin methods for convection-dominated problems , 1991 .

[44]  Jean-Luc Guermond,et al.  Weighting the Edge Stabilization , 2013, SIAM J. Numer. Anal..