Service-Oriented Line Planning and Timetabling for Passenger Trains

An integrated line planning and timetabling model is formulated with the objective of minimizing both user inconvenience and operational costs. User inconvenience is modeled as the total time passengers spend in a railway system, including waiting at origin and transfer stations. The model is solved using a cross-entropy metaheuristic. The line plan and timetable of Israel Railways is used as a benchmark. Using the same amount of resources, the average journey time of passengers is reduced by 20%.

[1]  Leo G. Kroon,et al.  A Branch-and-Cut Approach for Solving Railway Line-Planning Problems , 2004, Transp. Sci..

[2]  Christos D. Zaroliagis,et al.  Timetable Information: Models and Algorithms , 2004, ATMOS.

[3]  Thomas H. Cormen,et al.  Introduction to algorithms [2nd ed.] , 2001 .

[4]  Leo Kroon,et al.  Algorithmic Methods for Railway Optimization, International Dagstuhl Workshop, Dagstuhl Castle, Germany, June 20-25, 2004, 4th International Workshop, ATMOS 2004, Bergen, Norway, September 16-17, 2004, Revised Selected Papers , 2007, ATMOS.

[5]  Tito Homem-de-Mello,et al.  Solving the Vehicle Routing Problem with Stochastic Demands using the Cross-Entropy Method , 2005, Ann. Oper. Res..

[6]  U. T. Zimmermann,et al.  Train Schedule Optimization in Public Rail Transport , 2003 .

[7]  Anita Schöbel,et al.  Integrating line planning, timetabling, and vehicle scheduling: a customer-oriented heuristic , 2009, Public Transp..

[8]  Rolf H. Möhring,et al.  A Case Study in Periodic Timetabling , 2002, ATMOS.

[9]  Johanna Törnquist,et al.  Computer-based decision support for railway traffic scheduling and dispatching: A review of models and algorithms , 2005, ATMOS.

[10]  Dirk P. Kroese,et al.  The Cross Entropy Method: A Unified Approach To Combinatorial Optimization, Monte-carlo Simulation (Information Science and Statistics) , 2004 .

[11]  Boaz Golany,et al.  Setting gates for activities in the stochastic project scheduling problem through the cross entropy methodology , 2009, Ann. Oper. Res..

[12]  Janny Leung,et al.  Optimizing Timetable Synchronization for Rail Mass Transit , 2008, Transp. Sci..

[13]  Anita Schöbel,et al.  Line Planning with Minimal Traveling Time , 2005, ATMOS.

[14]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[15]  Madhav V. Marathe,et al.  Routing in Very Large Multi-Modal Time Dependent Networks: Theory and Practice (Invited Talk) , 2002, ATMOS.

[16]  Chelliah Sriskandarajah,et al.  Minimizing Cycle Time in a Blocking Flowshop , 2000, Oper. Res..

[17]  Nico M. van Dijk,et al.  Cost optimal allocation of rail passenger lines , 1998, Eur. J. Oper. Res..

[18]  Paolo Toth,et al.  Nominal and robust train timetabling problems , 2012, Eur. J. Oper. Res..

[19]  Martin Grötschel,et al.  A Column-Generation Approach to Line Planning in Public Transport , 2007, Transp. Sci..

[20]  Michiel A. Odijk,et al.  A CONSTRAINT GENERATION ALGORITHM FOR THE CONSTRUCTION OF PERIODIC RAILWAY TIMETABLES , 1996 .

[21]  Anita Schöbel,et al.  Line planning in public transportation: models and methods , 2012, OR Spectr..

[22]  A. Bouma,et al.  Linienplanung und Simulation für öffentliche Verkehrswege in Praxis und Theorie , 1994 .

[23]  Paolo Toth,et al.  Chapter 3 Passenger Railway Optimization , 2007, Transportation.

[24]  R. Rubinstein The Cross-Entropy Method for Combinatorial and Continuous Optimization , 1999 .

[25]  Marie Schmidt,et al.  The Complexity of Integrating Routing Decisions in Public Transportation Models , 2010, ATMOS.

[26]  P. Kreuzer,et al.  Optimal lines for railway systems , 1997 .

[27]  Rolf H. Möhring,et al.  The Modeling Power of the Periodic Event Scheduling Problem: Railway Timetables - and Beyond , 2004, ATMOS.

[28]  Paolo Toth,et al.  A Survey of Optimization Models for Train Routing and Scheduling , 1998, Transp. Sci..

[29]  Avishai Ceder,et al.  Scheduling Considerations in Designing Transit Routes at the Network Level , 1992 .

[30]  Dirk P. Kroese,et al.  The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning , 2004 .

[31]  Michael Francis Gorman,et al.  An application of genetic and tabu searches to the freight railroad operating plan problem , 1998, Ann. Oper. Res..

[32]  Mathias Kinder,et al.  Models for Periodic Timetabling , 2008 .

[33]  Michael R. Bussieck,et al.  Discrete optimization in public rail transport , 1997, Math. Program..

[34]  Walter Ukovich,et al.  A Mathematical Model for Periodic Scheduling Problems , 1989, SIAM J. Discret. Math..