Multiscale modeling: recent progress and open questions

Many important scientific problems are inherently multi scale. This is, for instance, the case in models in material science or environmental science. A big challenge is to formulate generic frameworks for multiscale modeling and simulation. Despite its importance, the scientific community still lacks a well-accepted generic methodology to address multiscale computating. We review a recent theoretical framework which aims at filling this gap. We also present new results and extension in relation with scale bridging methods and execution multiscale simulation on HPC systems, and discuss open questions related to this topic.

[1]  Katarzyna Rycerz,et al.  Distributed Multiscale Computations Using the MAPPER Framework , 2013, ICCS.

[2]  Bastien Chopard,et al.  A hybrid HPC/cloud distributed infrastructure: Coupling EC2 cloud resources with HPC clusters to run large tightly coupled multiscale applications , 2015, Future Gener. Comput. Syst..

[3]  Ian T. Cameron,et al.  Classification and analysis of integrating frameworks in multiscale modelling , 2004 .

[4]  Bastien Chopard,et al.  Parallel simulation of particle transport in an advection field applied to volcanic explosive eruptions , 2016, Comput. Geosci..

[5]  J. Gunn,et al.  Multi-scale simulations of the dynamics of in-stent restenosis: impact of stent deployment and design , 2011, Interface Focus.

[6]  Krzysztof Kurowski,et al.  Development of Science Gateways Using QCG — Lessons Learned from the Deployment on Large Scale Distributed and HPC Infrastructures , 2016, Journal of Grid Computing.

[7]  Alfons G. Hoekstra,et al.  Asymptotic analysis of Complex Automata models for reaction--diffusion systems , 2009 .

[8]  Peter V. Coveney,et al.  Multiscale computing in the exascale era , 2016, J. Comput. Sci..

[9]  H. Tahir,et al.  Modelling the Effect of a Functional Endothelium on the Development of In-Stent Restenosis , 2013, PloS one.

[10]  Wolfgang Marquardt,et al.  An ontological conceptualization of multiscale models , 2009, Comput. Chem. Eng..

[11]  Krzysztof Kurowski,et al.  Multiscale Computing with the Multiscale Modeling Library and Runtime Environment , 2013, ICCS.

[12]  Vytautas Jancauskas,et al.  Patterns for High Performance Multiscale Computing , 2019, Future Gener. Comput. Syst..

[13]  Alfons G. Hoekstra,et al.  Semi-intrusive uncertainty propagation for multiscale models , 2018, J. Comput. Sci..

[14]  Alfons G. Hoekstra,et al.  MML: towards a Multiscale Modeling Language , 2010, ICCS.

[15]  B Chopard,et al.  A spatio-temporal model for spontaneous thrombus formation in cerebral aneurysms , 2015, bioRxiv.

[16]  Bastien Chopard,et al.  MUSCLE-HPC: A new high performance API to couple multiscale parallel applications , 2017, Future Gener. Comput. Syst..

[17]  Roeland M. H. Merks,et al.  Models of coral growth: spontaneous branching, compactification and the Laplacian growth assumption. , 2003, Journal of theoretical biology.

[18]  R H Smallwood,et al.  The application of multiscale modelling to the process of development and prevention of stenosis in a stented coronary artery , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[19]  Pavel S. Zun,et al.  Towards the virtual artery: a multiscale model for vascular physiology at the physics–chemistry–biology interface , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  Alfons G. Hoekstra,et al.  Foundations of distributed multiscale computing: Formalization, specification, and analysis , 2013, J. Parallel Distributed Comput..

[21]  Peter V. Coveney,et al.  FabSim: Facilitating computational research through automation on large-scale and distributed e-infrastructures , 2015, Comput. Phys. Commun..

[22]  Alfons G. Hoekstra,et al.  Heterogeneous Multiscale Simulations of Suspension Flow , 2011, Multiscale Model. Simul..

[23]  P. Mendes,et al.  Multi-scale modelling and simulation in systems biology. , 2011, Integrative biology : quantitative biosciences from nano to macro.

[24]  Bastien Chopard,et al.  Multiscale modelling and simulation: a position paper , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[25]  P. V. Coveney,et al.  Performance of distributed multiscale simulations , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[26]  Peter V. Coveney,et al.  Flexible composition and execution of high performance, high fidelity multiscale biomedical simulations , 2012, Interface Focus.

[27]  E Weinan,et al.  Heterogeneous multiscale methods: A review , 2007 .