Electromagnetic coupling and plasmon localization in deterministic aperiodic arrays

In this paper we explore the potential of one-dimensional and two-dimensional deterministic aperiodic plasmonic arrays for the design of electromagnetic coupling and plasmon-enhanced, sub-wavelength optical fields on chip-scale devices. In particular, we investigate the spectral, far-field and near-field optical properties of metal nanoparticle arrays generated according to simple deterministic sequences characterized by fractal Fourier spectra. Additionally, we will consider the case of flat Fourier-transform sequences, which reproduce the behavior of purely random systems to an arbitrary degree of accuracy. Based on the coupled dipole approach (CDA) and finite difference time domain (FDTD) simulations, we study the radiative (long-range) and quasi-static (short-range) electromagnetic coupling in deterministic aperiodic plasmon arrays of metal nanoparticles. In addition, we investigate the local field enhancement and the enhancement scaling in periodic and aperiodic arrays with increasing degree of complexity. We believe that the accurate control of electromagnetic coupling and sub-wavelength field enhancement in deterministic aperiodic environments will enable novel nanodevice applications in areas such as field-enhanced nanosensors, engineered SERS substrates and optical nano-antenna arrays.

[1]  Nori,et al.  Generalized Thue-Morse chains and their physical properties. , 1991, Physical review. B, Condensed matter.

[2]  A. Cangellaris,et al.  Analysis of the numerical error caused by the stair-stepped approximation of a conducting boundary in FDTD simulations of electromagnetic phenomena , 1991 .

[3]  Zhu,et al.  Harmonic generations in an optical Fibonacci superlattice. , 1990, Physical review. B, Condensed matter.

[4]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[5]  Przemyslaw Prusinkiewicz,et al.  The Algorithmic Beauty of Plants , 1990, The Virtual Laboratory.

[6]  V. Shalaev Nonlinear Optics of Random Media: Fractal Composites and Metal-Dielectric Films , 1999 .

[7]  Vladimir M. Shalaev,et al.  Optical properties of nanostructured random media , 2002 .

[8]  G. Schatz,et al.  The Extinction Spectra of Silver Nanoparticle Arrays: Influence of Array Structure on Plasmon Resonance Wavelength and Width† , 2003 .

[9]  E. Purcell,et al.  Scattering and Absorption of Light by Nonspherical Dielectric Grains , 1973 .

[10]  George C Schatz,et al.  Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. , 2005, Nano letters.

[11]  J. Luck,et al.  Cantor spectra and scaling of gap widths in deterministic aperiodic systems. , 1989, Physical review. B, Condensed matter.

[12]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[13]  S. Havlin,et al.  Fractals and Disordered Systems , 1991 .

[14]  Harry A. Atwater,et al.  Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides , 2003, Nature materials.

[15]  Robert C. Hilborn,et al.  Chaos and Nonlinear Dynamics , 2000 .

[16]  Xinfan Huang,et al.  Symmetry-induced perfect transmission of light waves in quasiperiodic dielectric multilayers , 2002 .

[17]  Ron Lifshitz,et al.  The square Fibonacci tiling , 2002 .

[18]  Bruce T. Draine,et al.  The discrete-dipole approximation and its application to interstellar graphite grains , 1988 .

[19]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[20]  F. Payne,et al.  Numerical investigation of field enhancement by metal nano-particles using a hybrid FDTD-PSTD algorithm. , 2007, Optics express.

[21]  Ryu,et al.  Extended and critical wave functions in a Thue-Morse chain. , 1992, Physical review. B, Condensed matter.

[22]  C. Janot,et al.  Quasicrystals: A Primer , 1992 .

[23]  L. D. Negro,et al.  Photon band gap properties and omnidirectional reflectance in Si∕SiO2 Thue–Morse quasicrystals , 2004 .

[24]  An Hu,et al.  Perfect transmission and self-similar optical transmission spectra in symmetric Fibonacci-class multilayers , 2001 .

[25]  Harry A. Atwater,et al.  Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss , 2002 .

[26]  Kohmoto,et al.  Multifractal wave functions on a Fibonacci lattice. , 1989, Physical review. B, Condensed matter.

[27]  Johansson,et al.  Localization of electrons and electromagnetic waves in a deterministic aperiodic system. , 1992, Physical review. B, Condensed matter.

[28]  L. D. Negro,et al.  Spectrally enhanced light emission from aperiodic photonic structures , 2005 .

[29]  Harry A. Atwater,et al.  Optical pulse propagation in metal nanoparticle chain waveguides , 2003 .

[30]  L. Dal Negro,et al.  Light transport through the band-edge states of Fibonacci quasicrystals. , 2003, Physical review letters.

[31]  Harry A. Atwater,et al.  Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit , 2000 .

[32]  Gap states and localization properties of one-dimensional Fibonacci quasicrystals. , 1990, Physical review. B, Condensed matter.

[33]  Harry A. Atwater,et al.  Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy , 2002 .

[34]  M. Quinten,et al.  Absorption and elastic scattering of light by particle aggregates. , 1993, Applied optics.

[35]  de Brito PE,et al.  Field-induced localization in Fibonacci and Thue-Morse lattices. , 1995, Physical review. B, Condensed matter.

[36]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[37]  F. Aussenegg,et al.  Electromagnetic energy transport via linear chains of silver nanoparticles. , 1998, Optics letters.

[38]  M.R. Schroeder,et al.  Number theory , 1989, IEEE Potentials.

[39]  Fu,et al.  Spectral structure of two-dimensional Fibonacci quasilattices. , 1991, Physical review. B, Condensed matter.

[40]  E. Maciá Physical nature of critical modes in Fibonacci quasicrystals , 1999 .

[41]  L. Kroon,et al.  Localization-delocalization in aperiodic systems , 2002 .

[42]  L. Dal Negro,et al.  Spectral gaps and mode localization in Fibonacci chains of metal nanoparticles. , 2007, Optics express.

[43]  Michael Baake,et al.  Surprises in diffuse scattering , 2000, math-ph/0004022.

[44]  Taylor,et al.  Localization of light waves in Fibonacci dielectric multilayers. , 1994, Physical review letters.

[45]  Shengfeng Cheng,et al.  Trace map and eigenstates of a Thue-Morse chain in a general model , 2002 .

[46]  Nian-hua Liu,et al.  PROPAGATION OF LIGHT WAVES IN THUE-MORSE DIELECTRIC MULTILAYERS , 1997 .

[47]  M. Schroeder Number Theory in Science and Communication , 1984 .

[48]  Cheng,et al.  Structure and electronic properties of Thue-Morse lattices. , 1988, Physical review. B, Condensed matter.

[49]  C. Hafner,et al.  The multiple multipole method in electro- and magnetostatic problems , 1983 .

[50]  A. Lucas,et al.  Aggregation effect on the infrared absorption spectrum of small ionic crystals , 1976 .