Probabilistic Optical and Radar Initial Orbit Determination

Future space surveillance requires dealing with uncertainties directly in the initial orbit determination phase. We propose an approach based on Taylor differential algebra to both solve the initial orbit determination (IOD) problem and to map uncertainties from the observables space into the orbital elements space. This is achieved by approximating in Taylor series the general formula for probability density function (pdf) mapping through nonlinear transformations. In this way the mapping is obtained in an elegant and general fashion. The proposed approach is applied to both angles-only and two position vectors IOD for objects in LEO and GEO.

[1]  R. H. Gooding,et al.  A new procedure for the solution of the classical problem of minimal orbit determination from three lines of sight , 1996 .

[2]  Berz Martin Differential Algebraic Techniques , 1999 .

[3]  Johnny L. Worthy,et al.  Incorporating Uncertainty in Admissible Regions for Uncorrelated Detections , 2014 .

[4]  Daniel L. Pechkis,et al.  Statistical approach to the operational testing of space fence , 2016, IEEE Aerospace and Electronic Systems Magazine.

[5]  Matthew P. Wilkins,et al.  The Probabilistic Admissible Region with Additional Constraints , 2015 .

[6]  Michèle Lavagna,et al.  Nonlinear Mapping of Uncertainties in Celestial Mechanics , 2013 .

[7]  Matthew P. Wilkins,et al.  PROBABILISTIC ADMISSIBILITY IN ANGLES-ONLY INITIAL ORBIT DETERMINATION , 2014 .

[8]  P. W. Hawkes,et al.  Modern map methods in particle beam physics , 1999 .

[9]  Roberto Armellin,et al.  Long-term density evolution through semi-analytical and differential algebra techniques , 2017, Celestial Mechanics and Dynamical Astronomy.

[10]  M. Kaplan Modern Spacecraft Dynamics and Control , 1976 .

[11]  Martin Berz,et al.  COSY INFINITY Version 9 , 2006 .

[12]  M. Berz,et al.  Asteroid close encounters characterization using differential algebra: the case of Apophis , 2010 .

[13]  Raymond Kan From moments of sum to moments of product , 2008 .

[14]  Giovanni F. Gronchi,et al.  Multiple solutions in preliminary orbit determination from three observations , 2009 .

[15]  Manoranjan Majji,et al.  Analytic characterization of measurement uncertainty and initial orbit determination on orbital element representations , 2014 .

[16]  AAS 13-822 UNCERTAINTY CHARACTERIZATION FOR ANGLES-ONLY INITIAL ORBIT DETERMINATION , 2013 .

[17]  R. Gooding A procedure for the solution of Lambert's orbital boundary-value problem , 1990, Celestial Mechanics and Dynamical Astronomy.

[18]  L. Isserlis ON A FORMULA FOR THE PRODUCT-MOMENT COEFFICIENT OF ANY ORDER OF A NORMAL FREQUENCY DISTRIBUTION IN ANY NUMBER OF VARIABLES , 1918 .

[19]  belles-lettres et arts de Lyon. Mémoires de l'Academie (Royale) des Sciences, Belles-Lettres et Arts de Lyon. , 1854 .

[20]  T. T. Soong,et al.  Fundamentals of Probability and Statistics for Engineers , 2004 .

[21]  A. Celletti,et al.  Dependence on the observational time intervals and domain of convergence of orbital determination methods , 2006 .

[22]  P. R. Escobal,et al.  Methods of orbit determination , 1976 .

[23]  A. Morselli,et al.  Differential algebra space toolbox for nonlinear uncertainty propagation in space dynamics , 2016 .

[24]  A. Morselli,et al.  A high order method for orbital conjunctions analysis: Sensitivity to initial uncertainties , 2014 .

[25]  Chris Sabol,et al.  Uncertain Lambert Problem , 2015 .

[26]  Karri Muinonen,et al.  Asteroid Orbit Determination Using Bayesian Probabilities , 1993 .

[27]  Renato Zanetti,et al.  Dealing with uncertainties in angles-only initial orbit determination , 2016 .

[28]  M. Berz,et al.  Propagation of large uncertainty sets in orbital dynamics by automatic domain splitting , 2015 .

[29]  A. Milani,et al.  Orbit determination with very short arcs. I admissible regions , 2004 .

[30]  Karri Muinonen,et al.  Statistical Ranging of Asteroid Orbits , 2001 .

[31]  Roberto Armellin,et al.  High-order expansion of the solution of preliminary orbit determination problem , 2012 .

[32]  R. Park,et al.  Nonlinear Mapping of Gaussian Statistics: Theory and Applications to Spacecraft Trajectory Design , 2006 .

[33]  Matthew P. Wilkins,et al.  On mutual information for observation-to-observation association , 2015, 2015 18th International Conference on Information Fusion (Fusion).

[34]  M. P. Wilkins,et al.  On Uncertain Angles-Only Track Initiation for SSA , 2014 .

[35]  Kyoko Makino,et al.  Rigorous analysis of nonlinear motion in particle accelerators , 1998 .

[36]  M. Lavagna,et al.  Gravity assist space pruning based on differential algebra , 2009 .

[37]  R. Battin An introduction to the mathematics and methods of astrodynamics , 1987 .

[38]  Paul Jaffe,et al.  Orbital mechanics , 2017, IEEE Spectrum.

[39]  Michèle Lavagna,et al.  Application of high order expansions of two-point boundary value problems to astrodynamics , 2008 .

[40]  A. Brenner,et al.  GESTRA — A phased-array based surveillance and tracking radar for space situational awareness , 2016, 2016 IEEE International Symposium on Phased Array Systems and Technology (PAST).

[41]  Martin Berz,et al.  The method of power series tracking for the mathematical description of beam dynamics , 1987 .

[42]  Nitin Arora,et al.  A fast and robust multiple revolution Lambert algorithm using a cosine transformation , 2014 .