Eigenvalues, geometric expanders, sorting in rounds, and ramsey theory

AbstractExpanding graphs are relevant to theoretical computer science in several ways. Here we show that the points versus hyperplanes incidence graphs of finite geometries form highly (nonlinear) expanding graphs with essentially the smallest possible number of edges. The expansion properties of the graphs are proved using the eigenvalues of their adjacency matrices.These graphs enable us to improve previous results on a parallel sorting problem that arises in structural modeling, by describing an explicit algorithm to sortn elements ink time units using $$O(n^{\alpha _k } )$$ parallel processors, where, e.g., α2=7/4, α3=8/5, α4=26/17 and α5=22/15.Our approach also yields several applications to Ramsey Theory and other extremal problems in combinatorics.

[1]  Roy Meshulam,et al.  A Geometric Construction of a Superconcentrator of Depth 2 , 1984, Theor. Comput. Sci..

[2]  Noga Alon,et al.  Tight complexity bounds for parallel comparison sorting , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[3]  Peter Frankl,et al.  Intersection theorems with geometric consequences , 1981, Comb..

[4]  Noga Alon,et al.  lambda1, Isoperimetric inequalities for graphs, and superconcentrators , 1985, J. Comb. Theory, Ser. B.

[5]  Pavol Hell,et al.  Parallel Sorting with Constant Time for Comparisons , 1981, SIAM J. Comput..

[6]  F. Chung On concentrators, superconcentrators, generalizers, and nonblocking networks , 1979, The Bell System Technical Journal.

[7]  Robert E. Tarjan,et al.  Asymptotically tight bounds on time-space trade-offs in a pebble game , 1982, JACM.

[8]  Bela Bollobas,et al.  Graph theory , 1979 .

[9]  Solomon W. Golomb,et al.  Shift Register Sequences , 1981 .

[10]  Noga Alon,et al.  Eigenvalues, Expanders and Superconcentrators (Extended Abstract) , 1984, FOCS.

[11]  Leslie G. Valiant,et al.  Graph-Theoretic Properties in computational Complexity , 1976, J. Comput. Syst. Sci..

[12]  Zvi Galil,et al.  Explicit Constructions of Linear-Sized Superconcentrators , 1981, J. Comput. Syst. Sci..

[13]  Steven Roman,et al.  A Problem of Zarankiewicz , 1975, J. Comb. Theory, Ser. A.

[14]  A. Hajnal,et al.  ON COMPLETE TOPOLOGICAL SUBGRAPHS OF CERTAIN GRAPHS , 1969 .

[15]  Nicholas Pippenger,et al.  Advances in Pebbling (Preliminary Version) , 1982, ICALP.

[16]  de Ng Dick Bruijn A combinatorial problem , 1946 .

[17]  Martin Tompa Time-Space Tradeoffs for Computing Functions, Using Connectivity Properties of Their Circuits , 1980, J. Comput. Syst. Sci..

[18]  Harold Abelson,et al.  A Note on Time-Space Tradeoffs for Computing Continuous Functions , 1979, Inf. Process. Lett..

[19]  N. Alon,et al.  il , , lsoperimetric Inequalities for Graphs , and Superconcentrators , 1985 .

[20]  Noga Alon,et al.  Better Expanders and Superconcentrators , 1987, J. Algorithms.

[21]  B. Bollobás,et al.  Sorting in one round , 1981 .

[22]  B. Bollobás,et al.  Extremal Graph Theory , 2013 .

[23]  Joel H. Spencer,et al.  Asymptotic lower bounds for Ramsey functions , 1977, Discret. Math..

[24]  Noga Alon,et al.  Eigenvalues and expanders , 1986, Comb..

[25]  E. Szemerédi,et al.  Sorting inc logn parallel steps , 1983 .

[26]  R. Häggkvist,et al.  Sorting and Merging in Rounds , 1982 .

[27]  Robert E. Tarjan,et al.  Space bounds for a game on graphs , 1976, STOC '76.

[28]  R. M. Tanner Explicit Concentrators from Generalized N-Gons , 1984 .

[29]  Béla Bollobás,et al.  Sorting and Graphs , 1985 .

[30]  Maria M. Klawe,et al.  Non-existence of one-dimensional expanding graphs , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[31]  Leslie G. Valiant,et al.  Parallelism in Comparison Problems , 1975, SIAM J. Comput..

[32]  János Komlós,et al.  Sorting in c log n parallel sets , 1983, Comb..

[33]  Noga Alon,et al.  Expanders, sorting in rounds and superconcentrators of limited depth , 1985, STOC '85.

[34]  Joseph JáJá,et al.  Time-space tradeoffs for some algebraic problems , 1980, STOC '80.

[35]  Martin Tompa,et al.  Time-space tradeoffs for computing functions, using connectivity properties of their circuits , 1978, J. Comput. Syst. Sci..