Multiple Regression in Behavioral Research.
暂无分享,去创建一个
One of the dilemmas facing those who teach sociological methods and statistics these days is how to present the three main applied analytical models which derive from the general linear hypothesis-analysis of variance, regression, and analysis of covariance. The reason for this dilemma is that whereas there now exist in the sociological literature a number of theoretical expositions integrating these various models, nowhere has there existed a reference or, for that matter, a set of references which provided the computational integration in sufficient clarity that the teacher could assign them to his class and be assured that the student would obtain a clear picture of how the three models were computationally interrelated and interchangeable. Kerlinger and Pedhazur have painstakingly provided such a resource. For those looking for such a text (or reference book), it is a teacher's delight! The authors provide one with a consistency of framework which opens in Part 1 (five chapters). Those chapters are a review of the foundations of multiple regression and can be easily read by students who have had an introductory course in statistics. The review is, however, more than just a rehash of regression theory and procedures, as the authors are also developing a framework for the later integration of analysis of variance, analysis of covariance, time series analysis, path analysis and multivariate analysis (multivariate analysis of variance, canonical regression, and discriminant analysis). Part 2, which consists of six chapters, is the focal point of the book. For example, chapters 5, 6, and 7 give an introduction to the use of dummy coding to achieve the same results as one gets in one-way analysis of variance. Chapter 8 extends the procedures to multiple categorical variables and how they can be handled in the multiple regression framework to achieve the same results one would obtain via ANOV computational procedures in factorial designs. Chapter 9 departs from this theme to open considerations of testing for linear and curvilinear regression when working with continu'ous variables. Chapter 10 weaves these considerations into those developed earlier regarding categorical variables and discusses regression procedures for handling both continuous and categorical regressors in the same equation. (I have found this to be a topic of great interest among sociology students who wonder how to use