Polarimetric remote sensing of aerosols over land

[1] We present a new approach to retrieve the aerosol properties over land that uses accurate polarization measurements over a broad spectral (410–2250 nm) and angular (±60° from nadir) ranges. The approach uses longer wavelength observations to accurately estimate the surface effects, and it is incorporated into an optimal estimation framework for retrieving the particle number density and a detailed aerosol microphysical model: effective radius, variance, and complex refractive index. A sensitivity analysis shows that the uncertainties in aerosol optical thickness (AOT) increase with AOT while the uncertainties in the microphysical model decrease. The uncertainty in the single scattering albedo (SSA) is notably less than 0.05 by the time the AOT is greater than 0.2. We find that calibration is the major source of uncertainty and that perfect angular and spectral correlation of calibration errors reduces the uncertainties in retrieved quantities. Finally, we observe that shorter wavelength (<500 nm) observations are crucial for determining the aerosols vertical extent and imaginary refractive index from polarization measurements. The retrieval approach is tested under pristine and polluted conditions using observations made by the Research Scanning Polarimeter during the Aerosol Lidar Validation experiment and over California Southern wild fires. In both cases we find that the retrievals are within the combined uncertainties of the retrieval and the Aerosol Robotic Network Cimel products and Total Ozone Mapping Spectrometer Aerosol Index. This demonstrates the unique capability of polarization measurements to accurately retrieve AOTs under pristine conditions and provide estimation of the SSA at higher AOTs.

[1]  Kathleen A. Crean,et al.  Multiangle imaging spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations : Global aerosol system , 2005 .

[2]  J. Slusser,et al.  On Rayleigh Optical Depth Calculations , 1999 .

[3]  O. Dubovik,et al.  Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations , 2005 .

[4]  Didier Tanré,et al.  Polarized reflectance of bare soils and vegetation: measurements and models , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[5]  S. Solomon The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[6]  Jean-François Léon,et al.  Aerosol retrieval over land using a multiband polarimeter and comparison with path radiance method , 2007 .

[7]  Brian Cairns,et al.  Surface optical properties measured by the airborne research scanning polarimeter during the CLAMS experiment , 2004, SPIE Remote Sensing.

[8]  K. Stamnes,et al.  Accurate and self-consistent ocean color algorithm: simultaneous retrieval of aerosol optical properties and chlorophyll concentrations. , 2003, Applied optics.

[9]  M. Lebsock,et al.  Information content of near‐infrared spaceborne multiangular polarization measurements for aerosol retrievals , 2007 .

[10]  Gerald M. Stokes,et al.  The Atmospheric Radiation Measurement Program , 2003 .

[11]  C. Rosenzweig,et al.  Attributing physical and biological impacts to anthropogenic climate change , 2008, Nature.

[12]  Y. Kaufman,et al.  Passive remote sensing of tropospheric aerosol and atmospheric , 1997 .

[13]  J. Hansen,et al.  Light scattering in planetary atmospheres , 1974 .

[14]  Michael D. King,et al.  Aerosol properties over bright-reflecting source regions , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[16]  James D. Spinhirne,et al.  GLAS long‐range transport observation of the 2003 California forest fire plumes to the northeastern US , 2005 .

[17]  P. Bhartia,et al.  Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation , 1998 .

[18]  Florence Nadal,et al.  Parameterization of surface polarized reflectance derived from POLDER spaceborne measurements , 1999, IEEE Trans. Geosci. Remote. Sens..

[19]  J. Haywood,et al.  The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget , 1995 .

[20]  B. Holben,et al.  Validation of MODIS aerosol optical depth retrieval over land , 2002 .

[21]  Vern C. Vanderbilt,et al.  Polarized and specular reflectance variation with leaf surface features , 1993 .

[22]  R. J. Flowerdew,et al.  An approximation to improve accuracy in the derivation of surface reflectances from multi‐look satellite radiometers , 1995 .

[23]  Judith Lean,et al.  Evolution of the Sun's Spectral Irradiance Since the Maunder Minimum , 2000 .

[24]  M. Mishchenko,et al.  Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight , 1997 .

[25]  S. Kinne,et al.  Aerosol-induced radiative flux changes off the United States mid-Atlantic coast: Comparison of values calculated from sunphotometer and in situ data with those measured by airborne pyranometer , 1999 .

[26]  David J. Diner,et al.  Comparison of coincident Multiangle Imaging Spectroradiometer and Moderate Resolution Imaging Spectroradiometer aerosol optical depths over land and ocean scenes containing Aerosol Robotic Network sites , 2005 .

[27]  Yoram J. Kaufman,et al.  Monitoring of aerosol forcing of climate from space: analysis of measurement requirements , 2004, Journal of Quantitative Spectroscopy and Radiative Transfer.

[28]  Lorraine Remer,et al.  The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol , 1997, IEEE Trans. Geosci. Remote. Sens..

[29]  John H. Seinfeld,et al.  Climate response of direct radiative forcing of anthropogenic black carbon , 2005 .

[30]  P. Bhartia,et al.  Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data , 1997 .

[31]  Beat Schmid,et al.  Column closure studies of lower tropospheric aerosol and water vapor during ACE-Asia using airborne Sun photometer and airborne in situ and ship-based lidar measurements , 2003 .

[32]  Annick Bricaud,et al.  The POLDER mission: instrument characteristics and scientific objectives , 1994, IEEE Trans. Geosci. Remote. Sens..

[33]  F. Maignan,et al.  Remote sensing of aerosols over land surfaces from POLDER‐ADEOS‐1 polarized measurements , 2001 .

[34]  J. Keeley,et al.  Fire Management of California Shrubland Landscapes , 2002, Environmental management.

[35]  Michael D. King,et al.  Aerosol size distributions obtained by inversion of spectral optical depth measurements , 1978 .

[36]  Kathleen A. Crean,et al.  Regional aerosol retrieval results from MISR , 2002, IEEE Trans. Geosci. Remote. Sens..

[37]  Bernard Pinty,et al.  Techniques for the retrieval of aerosol properties over land and ocean using multiangle imaging , 1998, IEEE Trans. Geosci. Remote. Sens..

[38]  Yoram J. Kaufman,et al.  Information on aerosol size distribution contained in solar reflected spectral radiances , 1996 .

[39]  M. Mishchenko,et al.  Retrieval of aerosol properties over the ocean using multispectral and multiangle Photopolarimetric measurements from the Research Scanning Polarimeter , 2001 .

[40]  Larry D. Travis,et al.  Satellite retrieval of aerosol properties over the ocean using measurements of reflected sunlight: Effect of instrumental errors and aerosol absorption , 1997 .

[41]  R. Weiss,et al.  Trace gas and particulate emissions from the 2003 southern California wildfires , 2007 .

[42]  Larry D. Travis,et al.  Polarization: ground-based upward-looking and aircraft/satellite-based downward-looking measurements , 1997, Remote Sensing.

[43]  Yoram J. Kaufman,et al.  Relationship between surface reflectance in the visible and mid‐IR used in MODIS aerosol algorithm ‐ theory , 2002 .

[44]  A. Lacis,et al.  A description of the correlated k distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres , 1991 .

[45]  V. Ramanathan,et al.  Aerosols, Climate, and the Hydrological Cycle , 2001, Science.

[46]  J. Hovenier,et al.  The adding method for multiple scattering calculations of polarized light , 1987 .

[47]  U. Lohmann,et al.  Global indirect aerosol effects: a review , 2004 .

[48]  J. Hansen,et al.  Efficacy of climate forcings , 2005 .

[49]  Paul Ginoux,et al.  A Long-Term Record of Aerosol Optical Depth from TOMS Observations and Comparison to AERONET Measurements , 2002 .

[50]  Eric P. Shettle,et al.  Atmospheric Aerosols: Global Climatology and Radiative Characteristics , 1991 .

[51]  J. Hansen,et al.  Accurate monitoring of terrestrial aerosols and total solar irradiance: Introducing the Glory mission , 2007 .

[52]  Peter R. J. North,et al.  Estimation of aerosol opacity and land surface bidirectional reflectance from ATSR‐2 dual‐angle imagery: Operational method and validation , 2002 .

[53]  Beat Schmid,et al.  Retrieval of optical depth and particle size distribution of tropospheric and stratospheric aerosols by means of Sun photometry , 1997, IEEE Trans. Geosci. Remote. Sens..

[54]  Ralph A. Kahn,et al.  Sensitivity of multiangle imaging to natural mixtures of aerosols over ocean , 2001 .

[55]  R. Betts,et al.  Changes in Atmospheric Constituents and in Radiative Forcing. Chapter 2 , 2007 .

[56]  Brian Cairns,et al.  Contribution of water-leaving radiances to multiangle, multispectral polarimetric observations over the open ocean: bio-optical model results for case 1 waters. , 2006, Applied optics.

[57]  Jochen Landgraf,et al.  Retrieval of aerosol properties over land surfaces: capabilities of multiple-viewing-angle intensity and polarization measurements. , 2007, Applied optics.

[58]  Gerrit de Leeuw,et al.  Retrieval of aerosol optical depth over land using two‐angle view satellite radiometry during TARFOX , 1998 .

[59]  Owen B. Toon,et al.  Optical properties of some terrestrial rocks and glasses. , 1973 .

[60]  J. Hansen,et al.  Earth's Energy Imbalance: Confirmation and Implications , 2005, Science.

[61]  Alain Royer,et al.  Validation of a DDV‐based aerosol optical depth retrieval algorithm using multialtitude spectral imagery , 1999 .

[62]  Brian Cairns,et al.  Research Scanning Polarimeter: calibration and ground-based measurements , 1999, Optics + Photonics.

[63]  E. Vermote,et al.  The MODIS Aerosol Algorithm, Products, and Validation , 2005 .

[64]  Gian Paolo Gobbi,et al.  Modeling the Aerosol Extinction versus Backscatter Relationship for Lidar Applications: Maritime and Continental Conditions , 2004 .

[65]  Andrew A. Lacis,et al.  Scattering, Absorption, and Emission of Light by Small Particles , 2002 .

[66]  Brian Cairns,et al.  Case Studies of Aerosol Retrievals over the Ocean from Multiangle, Multispectral Photopolarimetric Remote Sensing Data , 2002 .

[67]  Michael D. King,et al.  A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements , 2000 .

[68]  T. Eck,et al.  Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations , 2002 .

[69]  J. Spinhirne,et al.  Aerosol and cloud optical depth from GLAS: Results and verification for an October 2003 California fire smoke case , 2005 .

[70]  J. Ackermann The Extinction-to-Backscatter Ratio of Tropospheric Aerosol: A Numerical Study , 1998 .

[71]  Brian Cairns Aerosol retrievals over land surfaces (the advantages of polarization) , 2001 .

[72]  David J. Diner,et al.  Comparison of MISR and AERONET aerosol optical depths over desert sites , 2003 .

[73]  O. Edenhofer,et al.  Mitigation from a cross-sectoral perspective , 2007 .