REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover

The Rover Environmental Monitoring Station (REMS) will investigate environmental factors directly tied to current habitability at the Martian surface during the Mars Science Laboratory (MSL) mission. Three major habitability factors are addressed by REMS: the thermal environment, ultraviolet irradiation, and water cycling. The thermal environment is determined by a mixture of processes, chief amongst these being the meteorological. Accordingly, the REMS sensors have been designed to record air and ground temperatures, pressure, relative humidity, wind speed in the horizontal and vertical directions, as well as ultraviolet radiation in different bands. These sensors are distributed over the rover in four places: two booms located on the MSL Remote Sensing Mast, the ultraviolet sensor on the rover deck, and the pressure sensor inside the rover body. Typical daily REMS observations will collect 180 minutes of data from all sensors simultaneously (arranged in 5 minute hourly samples plus 60 additional minutes taken at times to be decided during the course of the mission). REMS will add significantly to the environmental record collected by prior missions through the range of simultaneous observations including water vapor; the ability to take measurements routinely through the night; the intended minimum of one Martian year of observations; and the first measurement of surface UV irradiation. In this paper, we describe the scientific potential of REMS measurements and describe in detail the sensors that constitute REMS and the calibration procedures.

[1]  Paul S. Smith,et al.  Winds at the Phoenix landing site , 2010 .

[2]  Andrew Packard,et al.  A system analysis approach for atmospheric observations and models: Mesospheric HOx dilemma , 2006 .

[3]  G S Levy,et al.  Occultation Experiment: Results of the First Direct Measurement of Mars's Atmosphere and Ionosphere , 1965, Science.

[4]  L. Landberg,et al.  The Boundary Layer of Mars: Fluxes, Stability, Turbulent Spectra, and Growth of the Mixed Layer , 1994 .

[5]  M C Malin,et al.  Observational Evidence for an Active Surface Reservoir of Solid Carbon Dioxide on Mars , 2001, Science.

[6]  Scientific objectives and implementation of the Pressure Profile Instrument (PPI⧹HASI) for the Huygens spacecraft , 1998 .

[7]  Eva Mateo-Martí,et al.  Protection of chemolithoautotrophic bacteria exposed to simulated Mars environmental conditions , 2010 .

[8]  Mark I. Richardson,et al.  PlanetWRF: A general purpose, local to global numerical model for planetary atmospheric and climate dynamics , 2007 .

[9]  James H. Shirley,et al.  Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder: Seasonal variations in zonal mean temperature, dust, and water ice aerosols , 2010 .

[10]  D. Ming,et al.  Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site , 2005, Nature.

[11]  G. Landis,et al.  Gusev Crater, Mars: Observations of three dust devil seasons , 2010 .

[12]  G. Anderson,et al.  Mariner 9 Ultraviolet Spectrometer Experiment: Seasonal Variation of Ozone on Mars , 1973, Science.

[13]  Radiative habitable zones in martian polar environments. , 2005, Icarus.

[14]  Michael D. Smith Spacecraft Observations of the Martian Atmosphere , 2008 .

[15]  B. Jakosky,et al.  The Mars Water Cycle: Determining the Role of Exchange with the Regolith☆ , 1997 .

[16]  L. Landberg,et al.  Aspects Of The Atmospheric Surface Layers On Mars And Earth , 2002 .

[17]  Manish R. Patel,et al.  Ultraviolet radiation on the surface of Mars and the Beagle 2 UV sensor , 2002 .

[18]  Robert M. Haberle,et al.  A boundary-layer model for Mars - Comparison with Viking lander and entry data , 1993 .

[19]  V. Moroz,et al.  Spectrophotometry of Mars in the KRFM experiment of the Phobos mission : some properties of the particles of atmospheric aerosols and the surface , 1993 .

[20]  J. Romeral,et al.  A hot film anemometer for the Martian atmosphere , 2008 .

[21]  M. Hecht,et al.  Evidence that the reactivity of the martian soil is due to superoxide ions. , 2000, Science.

[22]  C. Cockell,et al.  The ultraviolet environment of Mars: biological implications past, present, and future. , 2000, Icarus.

[23]  Stephen R. Lewis,et al.  THE MARTIAN ATMOSPHERIC BOUNDARY LAYER , 2011 .

[24]  J. Zarnecki,et al.  Annual solar UV exposure and biological effective dose rates on the Martian surface. , 2004, Advances in space research : the official journal of the Committee on Space Research.

[25]  Ayodeji Akingunola,et al.  On pressure measurement and seasonal pressure variations during the Phoenix mission , 2010 .

[26]  Ana M. Mancho,et al.  Solar ultraviolet transfer in the Martian atmosphere: biological and geological implications , 2003 .

[27]  David P. Hinson,et al.  The depth of the convective boundary layer on Mars , 2008 .

[28]  Scot C. R. Rafkin,et al.  The Mars Regional Atmospheric Modeling System: Model Description and Selected Simulations , 2001 .

[29]  Larry W. Esposito,et al.  Meteorological observations on Martian surface: met-packages of Mars-96 Small Stations and Penetrators , 1998 .

[30]  Bruce A. Cantor,et al.  Ultraviolet dust aerosol properties as observed by MARCI , 2010 .

[31]  G. Neugebauer,et al.  Infrared thermal mapping experiment: The Viking Mars orbiter , 1972 .

[32]  J. Lunine,et al.  Martian and terrestrial dust devils: Test of a scaling theory using Pathfinder data , 2000 .

[33]  A. Bérces,et al.  Seasonal and diurnal variations in Martian surface ultraviolet irradiation: biological and chemical implications for the Martian regolith , 2003, International Journal of Astrobiology.

[34]  Amitabha Ghosh,et al.  One Martian year of atmospheric observations using MER Mini‐TES , 2006 .

[35]  David C. Catling,et al.  Temperature, pressure, and wind instrumentation in the Phoenix meteorological package , 2008 .

[36]  A. Harri,et al.  Vertical pressure profile of Titan—observations of the PPI/HASI instrument , 2006 .

[38]  Peter Guttorp,et al.  The Martian annual atmospheric pressure cycle: Years without great dust storms , 1993 .

[39]  H. Wänke,et al.  Experimental simulations of the photodecomposition of carbonates and sulphates on Mars , 1996, Nature.

[40]  Javier Gómez-Elvira,et al.  FTIR reflectance of selected minerals and their mixtures: implications for ground temperature-sensor monitoring on Mars surface environment (NASA/MSL-Rover Environmental Monitoring Station). , 2009, Journal of environmental monitoring : JEM.

[41]  Eduardo Sebastián,et al.  Pyrometer model based on sensor physical structure and thermal operation , 2010 .

[42]  Jeffrey R. Barnes,et al.  Mars atmospheric dynamics as simulated by the NASA Ames General Circulation Model: 1. The zonal‐mean circulation , 1993 .

[44]  C. Córdoba-Jabonero,et al.  Influence of aerosol multiple scattering of ultraviolet radiation on martian atmospheric sensing , 2007 .

[45]  R. Arvidson,et al.  The Changing Picture of Volatiles and Climate on Mars , 2005, Science.

[46]  G. R. Wilson,et al.  The atmosphere structure and meteorology instrument on the Mars Pathfinder lander , 1997 .

[47]  Mark I. Richardson,et al.  A survey of Martian dust devil activity using Mars Global Surveyor Mars Orbiter Camera images , 2002 .

[48]  S. Jiménez,et al.  Retrieval of ultraviolet spectral irradiance from filtered photodiode measurements , 2009 .

[49]  R. Rodrigo,et al.  A nonsteady one‐dimensional theoretical model of Mars' neutral atmospheric composition between 30 and 200 km , 1990 .

[50]  Stephen R. Lewis,et al.  Improved general circulation models of the Martian atmosphere from the surface to above 80 km , 1999 .

[51]  F. Lefévre,et al.  Global distribution of total ozone on Mars from SPICAM/MEX UV measurements , 2006 .

[52]  H. Abu-Mulaweh,et al.  Prediction of the Temperature in a Fin Cooled by Natural Convection and Radiation , 2006 .

[53]  R. Haberle,et al.  Detecting secular climate change on Mars , 2010 .

[54]  Manish R. Patel,et al.  The UV environment of the Beagle 2 landing site: detailed investigations and detection of atmospheric state , 2004 .

[55]  M. Ramos,et al.  Temperature gradient distribution in permafrost active layer, using a prototype of the ground temperature sensor (REMS-MSL) on deception island (Antarctica) , 2012 .

[56]  G. C. Greene,et al.  Atmospheric measurements on Mars - The Viking meteorology experiment , 1976 .

[57]  R. Clancy,et al.  Monitoring Mars with the Hubble Space Telescope: 1990-1991 Observations , 1994 .

[58]  F. Ferri,et al.  Dust devils as observed by Mars Pathfinder , 1999 .

[59]  C. Hord,et al.  Mariner Ultraviolet Spectrometer: Topography and Polar Cap , 1971, Science.