Herschel-ATLAS/GAMA: What determines the far-infrared properties of radio galaxies?

We perform a stacking analysis of Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) data in order to obtain isothermal dust temperatures and rest-frame luminosities at 250 μm (L_250), for a well-defined sample of 1599 radio sources over the H-ATLAS Phase 1/Galaxy and Mass Assembly (GAMA) area. The radio sample is generated using a combination of NRAO VLA Sky Survey data and K-band United Kingdom Infrared Telescope Deep Sky Survey–Large Area Survey data, over the redshift range 0.01 < z < 0.8. The far-infrared (FIR) properties of the sample are investigated as a function of 1.4-GHz luminosity, redshift, projected radio-source size and radio spectral index. In order to search for stellar-mass-dependent relations, we split the parent sample into those sources which are below and above 1.5 L∗_(K). After correcting for stellar mass and redshift, we find no relation between the 250-μm luminosity and the 1.4-GHz radio luminosity of radio active galactic nuclei. This implies that a galaxy's nominal radio luminosity has little or no bearing on the star formation rate (SFR) and/or dust mass content of the host system, although this does not mean that other variables (e.g. radio source size) related to the jets do not have an effect. The L_250 of both the radio detected and non-radio-detected galaxies (defined as those sources not detected at 1.4 GHz but detected in the Sloan Digital Sky Survey with r′ 30 kpc) counterparts. The higher dust temperature suggests that this may be attributed to enhanced SFRs in compact radio galaxies, but whether this is directly or indirectly due to radio activity (e.g. jet-induced or merger-driven star formation) is as yet unknown. For matched samples in L_K and g′–r′, sub-1.5 L∗_K and super-1.5 L∗_K radio-detected galaxies have 0.89±0.18 and 0.49±0.12 times the 250 μm luminosity of their non-radio-detected counterparts. Thus, while no difference in L_250 is observed in sub-1.5 L∗_K radio-detected galaxies, a strong deficit is observed in super-1.5 L∗_K radio-detected galaxies. We explain these results in terms of the hotter, denser and richer halo environments massive radio galaxies maintain and are embedded in. These environments are expected to quench the cold gas and dust supply needed for further star formation and therefore dust production. Our results indicate that all massive radio galaxies (>1.5 L∗_K) may have systematically lower FIR luminosities (∼25 per cent) than their colour-matched non-radio-detected counterparts. Finally, no relation between radio spectral index and L_250 is found for the subset of 1.4-GHz radio sources with detections at 330 MHz.

[1]  S. Brough,et al.  Herschel-ATLAS/GAMA: a difference between star formation rates in strong-line and weak-line radio galaxies , 2012, 1211.6440.

[2]  D. Elbaz,et al.  GOODS-Herschel: radio-excess signature of hidden AGN activity in distant star-forming galaxies , 2012, 1210.2521.

[3]  B. Wilkes,et al.  EXTREME HOST GALAXY GROWTH IN POWERFUL EARLY-EPOCH RADIO GALAXIES , 2012, 1209.0324.

[4]  P. Nulsen,et al.  Mechanical feedback from active galactic nuclei in galaxies, groups and clusters , 2012, 1204.0006.

[5]  Kraków,et al.  Ram pressure stripping of the multiphase ISM and star formation in the Virgo spiral galaxy NGC 4330 , 2011, 1111.5236.

[6]  J. Silk,et al.  Jet-induced star formation in gas-rich galaxies , 2011, 1111.4478.

[7]  R. Morganti,et al.  SPITZER MID-IR SPECTROSCOPY OF POWERFUL 2 JY AND 3CRR RADIO GALAXIES. I. EVIDENCE AGAINST A STRONG STARBURST–AGN CONNECTION IN RADIO-LOUD AGN , 2011, 1111.4476.

[8]  D. Schiminovich,et al.  CAUGHT IN THE ACT: STRONG, ACTIVE RAM PRESSURE STRIPPING IN VIRGO CLUSTER SPIRAL NGC 4330 , 2011, 1101.4066.

[9]  S. Maddox,et al.  Herschel-ATLAS: First data release of the Science Demonstration Phase source catalogues , 2010, 1010.5787.

[10]  S. Maddox,et al.  The first release of data from the Herschel ATLAS: the SPIRE images , 2010, 1010.5782.

[11]  S. Bamford,et al.  Herschel-ATLAS: far-infrared properties of radio-selected galaxies , 2010, 1009.5866.

[12]  S. Bamford,et al.  Herschel-ATLAS: the far-infrared-radio correlation at z < 0.5 , 2010, 1009.5390.

[13]  S. Bamford,et al.  Galaxy and Mass Assembly (GAMA): survey diagnostics and core data release , 2010, 1009.0614.

[14]  S. Maddox,et al.  H-ATLAS : PACS imaging for the Science Demonstration Phase , 2010, 1009.0262.

[15]  R. Morganti,et al.  The optical morphologies of the 2 Jy sample of radio galaxies: evidence for galaxy interactions , 2010, 1008.2683.

[16]  Edinburgh,et al.  The evolution of the Fundamental Plane of radio galaxies from z similar to 0.5 to the present day , 2010, 1008.2344.

[17]  S. Bamford,et al.  Herschel–ATLAS: counterparts from the ultraviolet–near-infrared in the science demonstration phase catalogue , 2010, 1007.5260.

[18]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[19]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[20]  S. Bamford,et al.  Herschel -ATLAS: evolution of the 250 µm luminosity function out to z=0.5 , 2010, 1005.2411.

[21]  Edinburgh,et al.  Evidence of different star formation histories for high- and low-luminosity radio galaxies , 2010, 1004.1099.

[22]  S. Dye,et al.  Galaxy And Mass Assembly (GAMA): the input catalogue and star–galaxy separation , 2009, 0910.5120.

[23]  S. Maddox,et al.  The Herschel ATLAS , 2009, 0910.4279.

[24]  S. Bamford,et al.  GAMA: towards a physical understanding of galaxy formation , 2009, 0910.5123.

[25]  Robert C. Kennicutt,et al.  DUST-CORRECTED STAR FORMATION RATES OF GALAXIES. I. COMBINATIONS OF Hα AND INFRARED TRACERS , 2009, 0908.0203.

[26]  Princeton,et al.  The 2dF-SDSS LRG and QSO Survey: the QSO luminosity function at 0.4 < z < 2.6 , 2009, 0907.2727.

[27]  M. Steinmetz,et al.  The role of black holes in galaxy formation and evolution , 2009, Nature.

[28]  D. Evans,et al.  The active nuclei of z < 1.0 3CRR radio sources , 2009, 0904.1323.

[29]  W. Harris,et al.  High-energy particle acceleration at the radio-lobe shock of Centaurus A , 2009, 0901.1346.

[30]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[31]  R. D. Baldi,et al.  Recent star formation in nearby 3CR radio-galaxies from UV HST observations , 2008, 0808.1555.

[32]  P. Bunclark,et al.  Astronomical data analysis software and systems XVII : proceedings of a conference held in Kensington Town Hall, London, United Kingdom, 23-26 September 2007 , 2008 .

[33]  D. Elbaz,et al.  A simple model to interpret the ultraviolet, optical and infrared emission from galaxies , 2008, 0806.1020.

[34]  Institute for Astronomy,et al.  Luminosity and surface brightness distribution of K-band galaxies from the UKIDSS Large Area Survey , 2008, 0806.0343.

[35]  D. Evans,et al.  Hot and cold gas accretion and feedback in radio-loud active galaxies , 2007, astro-ph/0701857.

[36]  E. Sadler,et al.  Radio sources in the 6dFGS: local luminosity functions at 1.4 GHz for star-forming galaxies and radio-loud AGN , 2006, astro-ph/0612018.

[37]  G. Kauffmann,et al.  On the prevalence of radio‐loud active galactic nuclei in brightest cluster galaxies: implications for AGN heating of cooling flows , 2006, astro-ph/0611197.

[38]  S. Roweis,et al.  K-Corrections and Filter Transformations in the Ultraviolet, Optical, and Near-Infrared , 2006, astro-ph/0606170.

[39]  M. Irwin,et al.  The UKIRT Infrared Deep Sky Survey (UKIDSS) , 2006, astro-ph/0604426.

[40]  S. Allen,et al.  The relation between accretion rate and jet power in X-ray luminous elliptical galaxies , 2006, astro-ph/0602549.

[41]  P. Salucci,et al.  A physical model for co-evolution of QSOs and of their spheroidal hosts , 2006, astro-ph/0602257.

[42]  G. Kauffmann,et al.  AGN-controlled cooling in elliptical galaxies , 2006, astro-ph/0602171.

[43]  A. Szalay,et al.  The Sloan Digital Sky Survey Quasar Survey: Quasar Luminosity Function from Data Release 3 , 2006, astro-ph/0601434.

[44]  A. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[45]  Oxford,et al.  Breaking the hierarchy of galaxy formation , 2005, astro-ph/0511338.

[46]  G. Kauffmann,et al.  The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.

[47]  Ž. Ivezić,et al.  The host galaxies of radio-loud AGN: mass dependencies, gas cooling and AGN feedback , 2005, astro-ph/0506269.

[48]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[49]  T. D. Matteo,et al.  Energy input from quasars regulates the growth and activity of black holes and their host galaxies , 2005, Nature.

[50]  A. Dekel,et al.  Galaxy bimodality due to cold flows and shock heating , 2004, astro-ph/0412300.

[51]  Thomas Henning,et al.  The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.

[52]  M. Jarvis,et al.  Evidence that powerful radio jets have a profound influence on the evolution of galaxies , 2004, astro-ph/0409687.

[53]  Iap,et al.  Gas, dust and star formation in distant radio galaxies , 2004, astro-ph/0405567.

[54]  Hans-Walter Rix,et al.  On the Black Hole Mass-Bulge Mass Relation , 2004, astro-ph/0402376.

[55]  O. Lahav,et al.  ANNz: Estimating Photometric Redshifts Using Artificial Neural Networks , 2003, astro-ph/0311058.

[56]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[57]  G. Granato,et al.  A Physical Model for the Coevolution of QSOs and Their Spheroidal Hosts , 2003, astro-ph/0307202.

[58]  A. Marconi,et al.  The Relation between Black Hole Mass, Bulge Mass, and Near-Infrared Luminosity , 2003, astro-ph/0304274.

[59]  Durham,et al.  What Shapes the Luminosity Function of Galaxies? , 2003, astro-ph/0302450.

[60]  R. Davé,et al.  How do galaxies get their gas , 2002, astro-ph/0407095.

[61]  C. Baugh,et al.  Hierarchical galaxy formation , 2000, astro-ph/0007281.

[62]  J. Dunlop,et al.  A submillimetre survey of the star formation history of radio galaxies , 2000, astro-ph/0002083.

[63]  E. Sadler,et al.  Radio Sources in the 2dF Galaxy Redshift Survey I. Radio Source Populations , 1999, Publications of the Astronomical Society of Australia.

[64]  S. Rawlings,et al.  Thermal-infrared imaging of 3C radio galaxies at z , 1 , 1999, astro-ph/9902087.

[65]  G. Kauffmann,et al.  The K-band luminosity function at z = 1: a powerful constraint on galaxy formation theory , 1998, astro-ph/9802233.

[66]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[67]  R. Terlevich,et al.  The cosmological evolution of the QSO luminosity density and of the star formation rate , 1997, astro-ph/9710134.

[68]  C. Kaiser,et al.  Evolutionary tracks of FRII sources through the P-D diagram , 1997, astro-ph/9710104.

[69]  H. Rottgering,et al.  HST, radio and infrared observations of 28 3CR radio galaxies at redshift z ∼ 1 — II. Old stellar populations in central cluster galaxies , 1997, astro-ph/9709195.

[70]  S. Tremaine,et al.  The Demography of Massive Dark Objects in Galaxy Centers , 1997, astro-ph/9708072.

[71]  S. Rawlings,et al.  [O iii] 500.7 spectroscopy of 3C galaxies and quasars at redshift z > 1 , 1997 .

[72]  A. Fruchter,et al.  HIGH-REDSHIFT GALAXIES IN THE HUBBLE DEEP FIELD : COLOUR SELECTION AND STAR FORMATION HISTORY TO Z 4 , 1996, astro-ph/9607172.

[73]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[74]  Richard L. White,et al.  The FIRST Survey: Faint Images of the Radio Sky at twenty centimeters , 1995 .

[75]  D. Cioffi,et al.  Overpressured cocoons in extragalactic radio sources , 1989 .

[76]  Maarten Schmidt,et al.  VLA observations of objects in the Palomar Bright Quasar Survey , 1989 .

[77]  J. Walsh,et al.  The giant halos of NGC 6543 and 6826 , 1989 .

[78]  M. Rees The radio/optical alignment of high-z radio galaxies: triggering of star formation in radio lobes , 1989 .

[79]  M. Longair,et al.  Optical spectra of 3CR radio galaxies. , 1979 .

[80]  E. Salpeter,et al.  On the physics of dust grains in hot gas. , 1979 .

[81]  W. G. van der Wiel,et al.  New Journal of Physics , 2012 .

[82]  G. Kauffmann,et al.  On the prevalence of radio-loud AGN in brightest cluster galaxies: implications for AGN heating of cooling flows , 2007 .

[83]  Robert Antonucci,et al.  Unified models for active galactic nuclei and quasars , 1993 .

[84]  P. Roelfsema,et al.  Astronomical Data Analysis Software and Systems I , 1992 .

[85]  Herschel (cid:2) -ATLAS: rapid evolution of dust in galaxies over the last 5 billion years , 2022 .