Nonlinear diffusion equation with reaction terms: Analytical and numerical results

We investigate a process obtained from a combination of nonlinear diffusion equations with reaction terms connected to a reversible process, i.e., 1⇌2, of two species. This feature implies that the species 1 reacts producing the species 2, and vice-versa. A particular case emerging from this scenario is represented by 1 → 2 (or 2 → 1), characterizing an irreversible process where one species produces the other. The results show that in the asymptotic limit of small and long times the behavior of the species is essentially governed by the diffusive terms. For intermediate times, the behavior of the system and particularly the rates depends on the reaction terms. In the presence of external forces, significant changes occur in the asymptotic limits. For these cases, we relate the solutions with the q-exponential function of the Tsallis statistic to highlight the compact or long-tailed behavior of the solutions and to establish a connection with the Tsallis thermo-statistic. We also extend the results to the spatial fractional differential operator by considering long-tailed distributions for the probability density function.

[1]  A. M. Mathai,et al.  The H-Function: Theory and Applications , 2009 .

[2]  Bartosz A. Grzybowski,et al.  Chemistry in motion : reaction-diffusion systems for micro- and nanotechnology , 2009 .

[3]  W Horsthemke,et al.  Spatial instabilities in reaction random walks with direction-independent kinetics. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[4]  C. Tsallis,et al.  Anomalous diffusion: nonlinear fractional Fokker–Planck equation , 2002 .

[5]  V. Voller,et al.  The modelling of heat, mass and solute transport in solidification systems , 1989 .

[6]  H. Pascal A nonlinear model of heat conduction , 1992 .

[7]  A. R. Plastino,et al.  A nonextensive maximum entropy approach to a family of nonlinear reaction–diffusion equations , 2000 .

[8]  S L Wearne,et al.  Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reaction-diffusion equations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Daniel Campos,et al.  Growth and dispersal with inertia: hyperbolic reaction-transport systems. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Simone Cifani,et al.  Continuous Dependence Estimates for Nonlinear Fractional Convection-diffusion Equations , 2011, SIAM J. Math. Anal..

[11]  M. Tokarchuk,et al.  Generalized diffusion equation with fractional derivatives within Renyi statistics , 2016, 1606.00260.

[12]  M Muskat,et al.  THE FLOW OF HOMOGENEOUS FLUIDS THROUGH POROUS MEDIA: ANALOGIES WITH OTHER PHYSICAL PROBLEMS , 1937 .

[13]  Fawang Liu,et al.  Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation , 2009, Appl. Math. Comput..

[14]  W. Press,et al.  Numerical Recipes in Fortran: The Art of Scientific Computing.@@@Numerical Recipes in C: The Art of Scientific Computing. , 1994 .

[15]  Constantino Tsallis,et al.  Introduction to Nonextensive Statistical Mechanics and Thermodynamics , 2003 .

[16]  A. Porporato,et al.  Similarity solutions of nonlinear diffusion problems related to mathematical hydraulics and the Fokker-Planck equation. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Escape time in anomalous diffusive media. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  E. K. Lenzi,et al.  Statistical mechanics based on Renyi entropy , 2000 .

[19]  Reversible A B reaction - diffusion process with initially mixed reactants: boundary layer function approach , 2008, 0810.3840.

[20]  Andrey G. Cherstvy,et al.  Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. , 2014, Physical chemistry chemical physics : PCCP.

[21]  J. Buckmaster Viscous sheets advancing over dry beds , 1977, Journal of Fluid Mechanics.

[22]  Daniel Campos,et al.  Stochastic Foundations in Movement Ecology: Anomalous Diffusion, Front Propagation and Random Searches , 2013 .

[23]  Lisa Borland,et al.  Microscopic dynamics of the nonlinear Fokker-Planck equation: A phenomenological model , 1998 .

[24]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[25]  A. M. Scarfone,et al.  Asymptotic solutions of a nonlinear diffusive equation in the framework of κ-generalized statistical mechanics , 2009 .

[26]  Qinwu Xu,et al.  Efficient numerical schemes for fractional sub-diffusion equation with the spatially variable coefficient , 2014 .

[27]  Haroldo V. Ribeiro,et al.  Intermittent Motion, Nonlinear Diffusion Equation and Tsallis Formalism , 2017, Entropy.

[28]  Exact solutions to nonlinear nonautonomous space-fractional diffusion equations with absorption. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  E. K. Lenzi,et al.  Anomalous-diffusion approach applied to the electrical response of water. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Joachim Maier,et al.  Physical Chemistry of Ionic Materials: Ions and Electrons in Solids , 2004 .

[31]  E. K. Lenzi,et al.  Fractional Diffusion Equations and Anomalous Diffusion , 2018 .

[32]  Alessandro Vespignani,et al.  The role of the airline transportation network in the prediction and predictability of global epidemics , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[33]  I. Turner,et al.  Numerical methods for fractional partial differential equations with Riesz space fractional derivatives , 2010 .

[34]  J. Klafter,et al.  First Steps in Random Walks: From Tools to Applications , 2011 .

[35]  C. Tsallis,et al.  Nonextensive foundation of Lévy distributions. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[36]  C. Tsallis,et al.  Crossover in diffusion equation: anomalous and normal behaviors. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Eduard Heindl,et al.  Understanding the spreading patterns of mobile phone viruses , 2012 .

[38]  Ervin K. Lenzi,et al.  Fractional nonlinear diffusion equation, solutions and anomalous diffusion , 2007 .

[39]  R. S. Mendes,et al.  Nonlinear diffusion equation, Tsallis formalism and exact solutions , 2005 .

[40]  S. Curilef,et al.  A family of evolution equations with nonlinear diffusion, Verhulst growth, and global regulation: Exact time-dependent solutions , 2007 .

[41]  R. S. Zola,et al.  Reaction on a solid surface supplied by an anomalous mass transfer source , 2014 .

[42]  Bart Nicolai,et al.  4 – The modelling of heat and mass transfer , 2001 .

[43]  L. Gmachowski,et al.  Fractal model of anomalous diffusion , 2015, European Biophysics Journal.

[44]  Specific heat in the nonextensive statistics: effective temperature and Lagrange parameter β , 2002 .

[45]  R. J. Moitsheki Transient Heat Diffusion with Temperature-Dependent Conductivity and Time-Dependent Heat Transfer Coefficient , 2008 .

[46]  Robert Hanbury Brown,et al.  Radar tale picks up US bias , 1997 .

[47]  Panos Argyrakis,et al.  Spreading of infection in a two species reaction-diffusion process in networks. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  M. Smoluchowski Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen , 1906 .

[49]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[50]  H. Selim,et al.  Scale-Dependent Dispersion in Soils: An Overview , 2003 .

[51]  A. A. Tateishi,et al.  Different diffusive regimes, generalized Langevin and diffusion equations. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  P. J. Wierenga,et al.  A generalized solution for solute flow in soils with mobile and immobile water , 1979 .

[54]  A. R. Plastino,et al.  Non-extensive statistical mechanics and generalized Fokker-Planck equation , 1995 .

[55]  I. Sokolov,et al.  Anomalous transport : foundations and applications , 2008 .

[56]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[57]  S. Silliman Particle transport through two-dimensional, saturated porous media: influence of physical structure of the medium , 1995 .

[58]  C. Tsallis Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World , 2009 .

[59]  J. Pelleg,et al.  Reaction rate in reversible A↔B reaction-diffusion processes , 2010 .

[60]  T. Frank Nonlinear Fokker-Planck Equations: Fundamentals and Applications , 2004 .

[61]  C. Tsallis,et al.  Statistical-mechanical foundation of the ubiquity of Lévy distributions in Nature. , 1995, Physical review letters.

[62]  Herbert Spohn,et al.  Surface dynamics below the roughening transition , 1993 .

[63]  Igor M. Sokolov Anomalous Diffusion on Fractal Networks , 2009, Encyclopedia of Complexity and Systems Science.

[64]  Yanjun Zhou,et al.  Power-law Fokker–Planck equation of unimolecular reaction based on the approximation to master equation , 2016 .

[65]  Fawang Liu,et al.  Numerical solution of the space fractional Fokker-Planck equation , 2004 .

[66]  Shigeru Kondo,et al.  Reaction-Diffusion Model as a Framework for Understanding Biological Pattern Formation , 2010, Science.

[67]  Peter Vadasz,et al.  Heat Conduction in Nanofluid Suspensions , 2006 .

[68]  Adrian H. Elcock,et al.  Diffusion, Crowding & Protein Stability in a Dynamic Molecular Model of the Bacterial Cytoplasm , 2010, PLoS Comput. Biol..

[69]  Rio de Janeiro-RJ,et al.  Thermostatistics of Overdamped Motion of Interacting Particles , 2010 .

[70]  E. Barkai,et al.  Fractional Fokker-Planck equation, solution, and application. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[71]  Tsallis,et al.  Anomalous diffusion associated with nonlinear fractional derivative fokker-planck-like equation: exact time-dependent solutions , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[72]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[73]  Sleeter Bull,et al.  Principles of feeding farm animals , 1938 .

[74]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[75]  E. K. Lenzi,et al.  Fractional diffusion equations coupled by reaction terms , 2016 .

[76]  Jordan Hristov,et al.  An approximate analytical (integral-balance) solution to a nonlinear heat diffusion equation , 2014 .

[77]  Pierre-Henri Chavanis,et al.  Nonlinear mean field Fokker-Planck equations. Application to the chemotaxis of biological populations , 2007, 0709.1829.

[78]  L. R. Evangelista,et al.  Anomalous diffusion governed by a fractional diffusion equation and the electrical response of an electrolytic cell. , 2011, The Journal of chemical physics.

[79]  C. Cosner,et al.  Spatial Ecology via Reaction-Diffusion Equations , 2003 .

[80]  N. Shigesada,et al.  Spatial distribution of dispersing animals , 1980, Journal of mathematical biology.

[81]  Tsallis,et al.  Anomalous diffusion in the presence of external forces: Exact time-dependent solutions and their thermostatistical basis. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[82]  V. Voller,et al.  Infiltration experiments demonstrate an explicit connection between heterogeneity and anomalous diffusion behavior , 2016 .

[83]  Isaak D. Mayergoyz,et al.  Nonlinear diffusion of electromagnetic fields : with applications to eddy currents and superconductivity , 1998 .