Random fuzzy sets: why, when, how

Random elements of non-Euclidean spaces have reached the forefront of statistical research with the extension of continuous process monitoring, leading to a lively interest in functional data. A fuzzy set is a generalized set for which membership degrees are identified by a [0,1]-valued function. The aim of this review is to present random fuzzy sets (also called fuzzy random variables) as a mathematical formalization of data-generating processes yielding fuzzy data. They will be contextualized as Borel measurable random elements of metric spaces endowed with a special convex cone structure. That allows one to construct notions of distribution, independence, expectation, variance, and so on, which mirror and generalize the literature of random variables and random vectors. The connections and differences between random fuzzy sets and random elements of classical function spaces (functional data) will be underlined. The paper also includes some bibliometric remarks, comments on the statistical analysis of fuzzy data, and pointers to the literature for the interested reader.

[1]  Huibert Kwakernaak,et al.  Fuzzy random variables--II. Algorithms and examples for the discrete case , 1979, Inf. Sci..

[2]  Hung T. Nguyen,et al.  A note on the extension principle for fuzzy sets , 1978 .

[3]  E. Giné,et al.  Bootstrapping General Empirical Measures , 1990 .

[4]  Hans Bandemer,et al.  Fuzzy Data Analysis , 1992 .

[5]  María Angeles Gil,et al.  The fuzzy hyperbolic inequality index associated with fuzzy random variables , 1998, Eur. J. Oper. Res..

[6]  Ana Colubi,et al.  A new family of metrics for compact, convex (fuzzy) sets based on a generalized concept of mid and spread , 2009, Inf. Sci..

[7]  Lotfi A. Zadeh,et al.  The concept of a linguistic variable and its application to approximate reasoning-III , 1975, Inf. Sci..

[8]  Frank Proske,et al.  A strong law of large numbers for generalized random sets from the viewpoint of empirical processes , 2003 .

[9]  G. Matheron Random Sets and Integral Geometry , 1976 .

[10]  Ana Colubi,et al.  Estimation of a simple linear regression model for fuzzy random variables , 2009, Fuzzy Sets Syst..

[11]  Wolfgang Näther,et al.  On the variance of random fuzzy variables , 2002 .

[12]  Murray S. Miron,et al.  Cross-Cultural Universals of Affective Meaning , 1975 .

[13]  Ana Colubi,et al.  On the formalization of fuzzy random variables , 2001, Inf. Sci..

[14]  Huibert Kwakernaak,et al.  Fuzzy random variables - I. definitions and theorems , 1978, Inf. Sci..

[15]  Pedro Terán,et al.  Algebraic, metric and probabilistic properties of convex combinations based on the t-normed extension principle: the strong law of large numbers , 2013, Fuzzy Sets Syst..

[16]  V. Kreinovich,et al.  Limit Theorems and Applications of Set-Valued and Fuzzy Set-Valued Random Variables , 2002 .

[17]  Beryl Hesketh,et al.  Work Adjustment Theory: An empirical test using a fuzzy rating scale☆ , 1992 .

[18]  Ana Colubi,et al.  A _{}[0,1] representation of random upper semicontinuous functions , 2002 .

[19]  R. Kruse,et al.  Statistics with vague data , 1987 .

[20]  Ana Colubi,et al.  A generalized strong law of large numbers , 1999 .

[21]  Vanessa Loh,et al.  A Future-Oriented Retirement Transition Adjustment Framework , 2011 .

[22]  A C C Gibbs,et al.  Data Analysis , 2009, Encyclopedia of Database Systems.

[23]  Yukio Ogura,et al.  Separability for graph convergence of sequences of fuzzy-valued random variables , 2001, Fuzzy Sets Syst..

[24]  Y. Ogura,et al.  Large deviations for random upper semicontinuous functions , 2009 .

[25]  Yukio Ogura,et al.  Strong laws of large numbers for independent fuzzy set-valued random variables , 2006, Fuzzy Sets Syst..

[26]  Yukio Ogura,et al.  Convergence of set-valued and fuzzy-valued martingales , 1999, Fuzzy Sets Syst..

[27]  Volker Krätschmer,et al.  Probability theory in fuzzy sample spaces , 2004 .

[28]  Volker Krätschmer,et al.  A unified approach to fuzzy random variables , 2001, Fuzzy Sets Syst..

[29]  Ana Colubi,et al.  Computational Statistics and Data Analysis Fuzzy Data Treated as Functional Data: a One-way Anova Test Approach , 2022 .

[30]  Tim Hesketh,et al.  Use of fuzzy variables in developing new scales from the Strong Interest Inventory , 1995 .

[31]  M. Puri,et al.  Limit theorems for fuzzy random variables , 1986, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[32]  C. Castaing,et al.  Convex analysis and measurable multifunctions , 1977 .

[33]  M. Puri,et al.  The Concept of Normality for Fuzzy Random Variables , 1985 .

[34]  R. Aumann INTEGRALS OF SET-VALUED FUNCTIONS , 1965 .

[35]  M. Puri,et al.  Fuzzy Random Variables , 1986 .

[36]  M. Beer,et al.  Fuzzy Randomness: Uncertainty in Civil Engineering and Computational Mechanics , 2004 .

[37]  Yukio Ogura,et al.  Central limit theorems for generalized set-valued random variables , 2003 .

[38]  I. Molchanov Theory of Random Sets , 2005 .

[39]  R. Coppi,et al.  Statistics with Fuzzy Random Variables , 2007 .

[40]  F. Hiai,et al.  Integrals, conditional expectations, and martingales of multivalued functions , 1977 .

[41]  Yun Kyong Kim,et al.  Measurability for fuzzy valued functions , 2002, Fuzzy Sets Syst..

[42]  Yukio Ogura,et al.  On Limit Theorems for Random Fuzzy Sets Including Large Deviation Principles , 2004 .

[43]  Ilya Molchanov On strong laws of large numbers for random upper semicontinuous functions , 1999 .

[44]  Pedro Terán Probabilistic foundations for measurement modelling with fuzzy random variables , 2007, Fuzzy Sets Syst..

[45]  Ralf Körner,et al.  On the variance of fuzzy random variables , 1997, Fuzzy Sets Syst..

[46]  Carlo Bertoluzza,et al.  A generalized real-valued measure of the inequality associated with a fuzzy random variable , 2001, Int. J. Approx. Reason..

[47]  Robert Pryor,et al.  An Application of a Computerized Fuzzy Graphic Rating Scale to the Psychological Measurement of Individual Differences , 1988, Int. J. Man Mach. Stud..

[48]  Dan A. Ralescu,et al.  Tools for fuzzy random variables: Embeddings and measurabilities , 2006, Comput. Stat. Data Anal..

[49]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[50]  Tim Hesketh,et al.  Computerized fuzzy ratings: The concept of a fuzzy class , 1994 .

[51]  Didier Dubois,et al.  Gradualness, uncertainty and bipolarity: Making sense of fuzzy sets , 2012, Fuzzy Sets Syst..

[52]  Hung T. Nguyen,et al.  Fundamentals of Statistics with Fuzzy Data , 2006, Studies in Fuzziness and Soft Computing.

[53]  Ana Colubi,et al.  Traditional techniques to prove some limit theorems for fuzzy random variables , 2002 .

[54]  Pedro Terán Agraz On Borel measurability and large deviations for fuzzy random variables , 2006, Fuzzy Sets Syst..

[55]  M. Puri,et al.  Convergence theorem for fuzzy martingales , 1991 .

[56]  María Asunción Lubiano,et al.  The λ-mean squared dispersion associated with a fuzzy random variable , 2000, Fuzzy Sets Syst..

[57]  Dan A. Ralescu,et al.  Overview on the development of fuzzy random variables , 2006, Fuzzy Sets Syst..