Extended rate, more GFUN

We present a software package that guesses formulae for sequences of, for example, rational numbers or rational functions, given the first few terms. We implement an algorithm due to Bernhard Beckermann and George Labahn, together with some enhancements to render our package efficient. Thus we extend and complement Christian Krattenthaler's program Rate.m, the parts concerned with guessing of Bruno Salvy and Paul Zimmermann's GFUN, the univariate case of Manuel Kauers' Guess.m and Manuel Kauers' and Christoph Koutschan's qGeneratingFunctions.m.

[1]  Amit Khetan The resultant of an unmixed bivariate system , 2003, J. Symb. Comput..

[2]  Victor Y. Pan,et al.  Improved algorithms for computing determinants and resultants , 2005, J. Complex..

[3]  M. Kauers,et al.  Algorithms for Nonlinear Higher Order Di erence Equa-tions , 2005 .

[4]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[5]  B. Beckermann,et al.  A Uniform Approach for the Fast Computation of Matrix-Type Padé Approximants , 1994, SIAM J. Matrix Anal. Appl..

[6]  C. Krattenthaler ADVANCED DETERMINANT CALCULUS , 1999, math/9902004.

[7]  Doron Zeilberger,et al.  Proof of Ira Gessel's lattice path conjecture , 2008, Proceedings of the National Academy of Sciences.

[8]  N. Sloane A Handbook Of Integer Sequences , 1973 .

[9]  Ömer Egecioglu,et al.  A multilinear operator for almost product evaluation of Hankel determinants , 2010, J. Comb. Theory, Ser. A.

[10]  M. Fisher,et al.  Inhomogeneous differential approximants for power series , 1980 .

[11]  Doron Zeilberger Dave Robbins' art of guessing , 2005, Adv. Appl. Math..

[12]  Manuel Kauers,et al.  Automatic Classification of Restricted Lattice Walks , 2008, 0811.2899.

[13]  George Labahn,et al.  Fraction-Free Computation of Matrix Rational Interpolants and Matrix GCDs , 2000, SIAM J. Matrix Anal. Appl..

[14]  Don Zagier,et al.  Elliptic modular forms and their applications. , 2008 .

[15]  Martin Klazar,et al.  Bell numbers, their relatives, and algebraic differential equations , 2003, J. Comb. Theory A.

[16]  Bruno Salvy,et al.  GFUN: a Maple package for the manipulation of generating and holonomic functions in one variable , 1994, TOMS.

[17]  Alexander Ostrowski,et al.  Über Dirichletsche Reihen und algebraische Differentialgleichungen , 1920 .

[19]  George Labahn,et al.  Recursiveness in matrix rational interpolation problems , 1997 .

[20]  Paul W. Abrahams Application of LISP to sequence prediction , 1966, SYMSAC '66.

[21]  D. Bobrow,et al.  THE PROGRAMMING LANGUAGE LISP: ITS OPERATION AND APPLICATIONS, , 1967 .

[22]  Anthony J. Guttmann,et al.  Algebraic approximants: a new method of series analysis , 1990 .

[23]  Manuel Kauers,et al.  A Mathematica package for q-holonomic sequences and power series , 2009 .

[24]  T. Prellberg,et al.  Critical exponents from nonlinear functional equations for partially directed cluster models , 1995 .

[25]  Richard P. Stanley,et al.  Differentiably Finite Power Series , 1980, Eur. J. Comb..

[26]  Joris van der Hoeven A new zero-test for formal power series , 2002, ISSAC '02.

[27]  David A. Cox,et al.  Using Algebraic Geometry , 1998 .

[28]  K. Mahler,et al.  On a class of non-linear functional equations connected with modular functions , 1976, Journal of the Australian Mathematical Society.

[29]  François Bergeron,et al.  Computing the Generating Function of a Series Given Its First Few Terms , 1992, Exp. Math..

[30]  W. T. Tutte Chromatic sums revisited , 1995 .