Towards Adaptive Smoothed Aggregation (AlphaSA) for Nonsymmetric Problems
暂无分享,去创建一个
Thomas A. Manteuffel | Stephen F. McCormick | Marian Brezina | John W. Ruge | Geoffrey Sanders | T. Manteuffel | S. McCormick | J. Ruge | M. Brezina | G. Sanders
[1] Randolph E. Bank,et al. A Comparison of Two Multilevel Iterative Methods for Nonsymmetric and Indefinite Elliptic Finite Element Equations , 1981 .
[2] Junping Wang. Convergence analysis of multigrid algorithms for nonselfadjoint and indefinite elliptic problems , 1993 .
[3] Jan Mandel,et al. Multigrid convergence for nonsymmetric, indefinite variational problems and one smoothing step , 1986 .
[4] Marian Brezina,et al. Convergence of algebraic multigrid based on smoothed aggregation , 1998, Numerische Mathematik.
[5] John W. Ruge,et al. Multigrid methods for differential eigenvalue and variational problems and multigrid simulation , 1981 .
[6] Jonathan J. Hu,et al. A new smoothed aggregation multigrid method for anisotropic problems , 2007, Numer. Linear Algebra Appl..
[7] J. Pasciak,et al. Uniform convergence of multigrid V-cycle iterations for indefinite and nonsymmetric problems , 1994 .
[8] Panayot S. Vassilevski,et al. A generalized eigensolver based on smoothed aggregation (GES-SA) for initializing smoothed aggregation (SA) multigrid , 2008, Numer. Linear Algebra Appl..
[9] William L. Briggs,et al. A multigrid tutorial , 1987 .
[10] Petr Vaněk. Acceleration of convergence of a two-level algorithm by smoothing transfer operators , 1992 .
[11] S. F. McCormick,et al. Multigrid Methods for Variational Problems , 1982 .
[12] Achi Brandt,et al. Fast Multigrid Solution of the Advection Problem with Closed Characteristics , 1998, SIAM J. Sci. Comput..
[13] Irad Yavneh,et al. Coarse-Grid Correction for Nonelliptic and Singular Perturbation Problems , 1998, SIAM J. Sci. Comput..
[14] Geoffrey D. Sanders. Extensions to adaptive smooth aggregation (alphaSA) multigrid: Eigensolver initialization and nonsymmetric problems , 2008 .
[15] Marian Brezina,et al. Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems , 2005, Computing.
[16] Ray S. Tuminaro,et al. A New Petrov--Galerkin Smoothed Aggregation Preconditioner for Nonsymmetric Linear Systems , 2008, SIAM J. Sci. Comput..
[17] J. Pasciak,et al. New convergence estimates for multigrid algorithms , 1987 .
[18] Jan Mandel,et al. An algebraic theory for multigrid methods for variational problems , 1988 .
[19] D. Brandt,et al. Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .
[20] Thomas A. Manteuffel,et al. Adaptive Smoothed Aggregation (αSA) , 2004, SIAM J. Sci. Comput..
[21] David E. Keyes,et al. Adaptive Smoothed Aggregation in Lattice QCD , 2007 .
[22] A. Brandt. Algebraic multigrid theory: The symmetric case , 1986 .
[23] J. W. Ruge,et al. 4. Algebraic Multigrid , 1987 .
[24] Marian Brezina,et al. Algebraic Multigrid on Unstructured Meshes , 1994 .
[25] H. Simon,et al. Two Conjugate-Gradient-Type Methods for Unsymmetric Linear Equations , 1988 .
[26] Thomas A. Manteuffel,et al. Smoothed Aggregation Multigrid for Markov Chains , 2010, SIAM J. Sci. Comput..
[27] Petr Vanek,et al. An Aggregation Multigrid Solver for convection-diffusion problems onunstructured meshes. , 1998 .
[28] Ulrich Hetmaniuk. A Rayleigh quotient minimization algorithm based on algebraic multigrid , 2007, Numer. Linear Algebra Appl..