Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models
暂无分享,去创建一个
[1] Arjun K. Gupta. The Theory of Linear Models and Multivariate Analysis , 1981 .
[2] Martin Fodslette Møller,et al. A scaled conjugate gradient algorithm for fast supervised learning , 1993, Neural Networks.
[3] Sanjay Ghemawat,et al. MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.
[4] Darren J. Wilkinson,et al. Parallel Bayesian Computation , 2005 .
[5] Christopher K. I. Williams,et al. Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) , 2005 .
[6] Carl E. Rasmussen,et al. A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..
[7] Neil D. Lawrence,et al. Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent Variable Models , 2005, J. Mach. Learn. Res..
[8] Zoubin Ghahramani,et al. Sparse Gaussian Processes using Pseudo-inputs , 2005, NIPS.
[9] Anthony Brockwell. Parallel Markov chain Monte Carlo Simulation by Pre-Fetching , 2006 .
[10] Max Welling,et al. Asynchronous Distributed Learning of Topic Models , 2008, NIPS.
[11] Michalis K. Titsias,et al. Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.
[12] Neil D. Lawrence,et al. Bayesian Gaussian Process Latent Variable Model , 2010, AISTATS.
[13] Phil Blunsom,et al. A Systematic Bayesian Treatment of the IBM Alignment Models , 2013, HLT-NAACL.
[14] Eric P. Xing,et al. Parallel Markov Chain Monte Carlo for Nonparametric Mixture Models , 2013, ICML.
[15] Ryan P. Adams,et al. ClusterCluster: Parallel Markov Chain Monte Carlo for Dirichlet Process Mixtures , 2013, ArXiv.
[16] Chong Wang,et al. Stochastic variational inference , 2012, J. Mach. Learn. Res..
[17] Neil D. Lawrence,et al. Gaussian Processes for Big Data , 2013, UAI.
[18] Zoubin Ghahramani,et al. Pitfalls in the use of Parallel Inference for the Dirichlet Process , 2014, ICML.