Synthesis, structure and properties of cobalt(III) complexes of pentadentate ligands with pyridyl pendant arms

Cobalt(III) complexes of the pentadentate ligands 3-[4-(2-pyridyl)-3-azabut-3-enyl]-3-azapentane-1,5-diamine (L1), 3-[4-(2-pyridyl)-3-azabutyl]-3-azapentane-1,5-diamine (L2) and 1,4-bis(2-pyridylmethyl)-1,4,7-triazacyclononane (L4) have been synthesized. Various characterization studies have confirmed the formation of the complexes [CoL4(OH2)]3+, [Co(L4)Cl]2+, [Co(L1)Cl]2+, [Co(L2)Cl]2+ and [Co(HL3)Cl]2+(HL3= 3-{2-[hydroxy(2-pyridyl)methyleneamino]ethyl}-3-azapentane-1,5-diamine) the product of oxidation of [Co(L1)Cl]2+ in acidic solution. The structure of [CoL4(OH2)][ClO4]3·H2O has been determined by single crystal X-ray diffraction. The complex crystallizes in the orthorhombic space group P212121, with a= 15.090(3), b= 16.659(4), c= 10.192(4)A and Z= 4. Refinement gave final R and R′ values of 0.045 and 0.043, respectively, for 1708 observed reflections. The pyridyl pendant arms were found to introduce significant distortion from ideal octahedral geometry. The Co–N(tacn) distances are shorter than in related complexes of ligands derived from 1,4,7-triazacyclononane (tacn). The complex [Co(HL3)Cl][ClO4]2·H2O crystallizes in the monoclinic space group P21/c with a= 13.496(5), b= 10.253(3), c= 15.371(6)A, β= 101.65(3)° and Z= 4. Refinement gave final R and R′ values of 0.054 and 0.054, respectively, for 1686 observed reflections. The bond lengths within the amide portion of the pentadentate ligand are intermediate between keto and enol resonance forms. Protonation of the amide oxygen is implied by the number of counter ions present. No evidence of imine oxidation was observed in electrochemical studies. These studies indicated that some stabilization of the CoII state relative to CoIII arises from the presence of pyridyl and imine π acceptors.

[1]  R. L. Martin,et al.  Binuclear Nickel Complexes with Single Azide Bridges. Structure and Properties of [Ni2(N,N-bis(2-aminoethyl)-N'-(2-pyridylmethyl)ethane-1,2-diamine)2(.mu.-N3)](ClO4)3 and [Ni2(1,4-bis(2-pyridylmethyl)-1,4,7-triazacyclononane)2(.mu.-N3)](ClO4)3 , 1994 .

[2]  A. Pramanik,et al.  Facile Aldimine .fwdarw. Amide Oxidation in a Rhenium Complex , 1994 .

[3]  D. Busch,et al.  Reactivity of superoxide toward iron(II) complexes with pentadentate and hexadentate ligands derived from cyclononane , 1993 .

[4]  D. Busch,et al.  Synthesis and properties of the iron(II) complex of a pentadentate ligand derived from diazaoxacyclononane , 1993 .

[5]  R. Mattes,et al.  Nickel, Palladium- und Platinkomplexe funktionalisierter Makrocyclen. Die Kristallstrukturen von [Ni(py2-tasn)(H2O)](ClO4)2, [Pd(py2-tasn)](PF6)2 und [Pt(py2-tasn)](PF6)2. (py2-tasn = 4,7-Bis(2-methylpyridyl)-1-thia-4,7-diazacyclononan) , 1993 .

[6]  C. Xu,et al.  Chemical oxidation of the ligand in nickel(II) cyclam : formation of a novel dinuclear complex and of a related cation containing a ligand radical ion , 1992 .

[7]  H. Elias,et al.  Oxygen Activation on Nickel(II)tetrahydrosalen Complexes with the Formation of Nickel(II)dihydrosalen Complexes , 1992 .

[8]  K. Wieghardt,et al.  Synthese von N‐phenolat‐funktionalisierten Makrocyclen des 1,4,7‐Trazacyclononans sowie des 1‐Oxa‐4,7‐diazacyclononans und ihre Komplexchemie mit Eisen(III) , 1992 .

[9]  D. Wambeke,et al.  Potentiometric, calorimetric and nuclear magnetic resonance studies of the protonation in aqueous solution of 1-thia-4,7-diazacyclononane-N,N′-diacetic acid, 1-thia-4,8-diazacyclodecane-N,N′-diacetic acid and related open-chain diaminocarboxylic acids , 1992 .

[10]  R. L. Martin,et al.  Crystal and Molecular Structure of the Peroxo-Bridged Dimer [(trenen)CoO2Co(trenen)] (ClO4)4 Where trenen = N,N,N'-Tris(2-aminoethyl)-ethane-1,2-diamine , 1991 .

[11]  G. Lawrance,et al.  Complexes of polyaza macrocycles bearing pendent coordinating groups , 1990 .

[12]  A. Mcauley,et al.  Synthesis of a novel macrobicyclic ligand, 15-thia-1,5,8,12-tetraazabicyclo[10.5.2]nonadecane, and its nickel(II) and copper(II) complexes. X-ray crystal structures of [Cu(L1)](ClO4)2 and [Ni(L1)(ClO4)]ClO4 , 1989 .

[13]  B. Golding,et al.  Metal ion promoted reactions in organic synthesis. Intramolecular condensations between ligands containing amine and carbonyl groups , 1988 .

[14]  P. Osváth,et al.  Complexes of tridentate and pentadentate macrocyclic ligands , 1988 .

[15]  G. W. Bushnell,et al.  Synthesis of the hexaamine ligand 1,4,7-tris(3-aminopropyl)-1,4,7-triazacyclononane: reactivity and x-ray crystal structures of the nickel(II) and cobalt(III) complexes , 1988 .

[16]  K. Wieghardt,et al.  Syntheses, properties, and electrochemistry of transition-metal complexes of the macrocycle 1,4,7-tris(2-pyridylmethyl)-1,4,7-triazacyclononane (L). Crystal structures of [NiL](ClO4)2, [MnL](ClO4)2, and [PdL](PF6)2 containing a distorted-square-base-pyramidal PdIIN5 core , 1986 .

[17]  Scott R. Wilson,et al.  Synthesis and structure of metal complexes of triaza macrocycles with three pendant pyridylmethyl arms , 1986 .

[18]  D. Mentzafos,et al.  Mercuric halide adducts: Synthesis and structure of [Co(NH3)5Cl]Hg3Cl8 and [Co(NH3)5HPO4]2Hg3Cl8 , 1985 .

[19]  K. Wieghardt,et al.  Redox potentials of bis(1,4,7-triazacyclononane complexes of some first transition series metals(II,III). Preparation of bis(1,4,7-triazacyclononane)nickel(III) perchlorate , 1983 .

[20]  D. I. Stuart,et al.  An empirical method for correcting diffractometer data for absorption effects , 1983 .

[21]  Helmut Sigel,et al.  Coordinating properties of the amide bond. Stability and structure of metal ion complexes of peptides and related ligands , 1982 .

[22]  G. Lawrance,et al.  Branched cyclononane macrocycles with pentaamine and tetraamine-thioether donors. Preparation and base hydrolysis of chlorocobalt(III) complexes , 1982 .

[23]  A. Sargeson,et al.  Intramolecular carbinolamine and imine formation with cobalt(III)-amine complexes. Synthesis, structure, and reactivity , 1981 .

[24]  D. Mackey,et al.  Proton chemical shifts and diamagnetic anisotropy in cobalt(III) pentaammine complexes , 1978 .

[25]  E. Barefield,et al.  Cobalt(III) complexes of the cyclic triamine 1,4,7-triazacyclononane and Aminoalcohol Ligands , 1976 .

[26]  R. H. Holm,et al.  Ligand-based redox reactions. Analysis of the electron paramagnetic resonance spectrum of the [Ni(Me4[14]hexaenatoN4)]+ cation radical, the central member of a three-membered electron transfer series containing a tetraaza[14]annulene ligand system , 1975 .

[27]  B. Golding,et al.  Intramolecular chelation via imines. Stereoselective synthesis of s-chloro-3-(2-aminoethyl)-1,8-diamino-3,6-diazaoctanecobalt(III) ion , 1974 .

[28]  H. Chum,et al.  Ligand oxidation in iron diimine complexes. II. Rate and mechanism of the oxidation of tris(glyoxal bis(methylimine))iron(II) by cerium(IV) , 1974 .

[29]  H. Chum,et al.  Ligand oxidation in iron diimine complexes. I. Stoichiometry and products of the oxidation of tris(glyoxal bis(methylimine))iron(II) by cerium(IV) , 1974 .

[30]  S. Svensson,et al.  Base Hydrolysis and Structure of an Isomer of Chloro-4-(2-aminoethyl)-7-methyl-1,4,7,10-tetraazadecanecobalt(III) Perchlorate. , 1972 .

[31]  I. E. Maxwell Crystal and molecular structure of racemic (4-(2-aminoethyl)-1,4,7,10-tetraazadecane)azidocobalt(III) nitrate hydrate , 1971 .

[32]  R. Gillard,et al.  Structure of a bisGlycylglycinate-cobalt(III) Complex , 1966, Nature.

[33]  K. Nakamoto,et al.  Stretching Frequencies as a Function of Distances in Hydrogen Bonds , 1955 .