Helium Ion Microscopy for Graphene Characterization and Modification

[1]  J. Coleman,et al.  Helium ion microscopy of graphene: beam damage, image quality and edge contrast , 2013, Nanotechnology.

[2]  J. Coey,et al.  Local modification of magnetic anisotropy and ion milling of Co/Pt multilayers using a He+ ion beam microscope , 2013 .

[3]  D. Maas,et al.  Novel nanosample preparation with a helium ion microscope , 2013 .

[4]  Cheol‐Woong Yang,et al.  Thickness contrast of few‐layered graphene in SEM , 2012 .

[5]  M. Matsuka,et al.  Preparation of tantalum-based oxynitride nanosheets by exfoliation of a layered oxynitride, CsCa2Ta3O(10-x)N(y), and their photocatalytic activity. , 2012, Journal of the American Chemical Society.

[6]  J. Boland,et al.  Existence of micrometer-scale water droplets at solvent/air interfaces. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[7]  B. Mizaikoff,et al.  FIB/SEM tomography with TEM-like resolution for 3D imaging of high-pressure frozen cells , 2012, Histochemistry and Cell Biology.

[8]  Hongzhou Zhang,et al.  Nano-structuring, surface and bulk modification with a focused helium ion beam , 2012, Beilstein journal of nanotechnology.

[9]  Tom Wirtz,et al.  Towards secondary ion mass spectrometry on the helium ion microscope: An experimental and simulation based feasibility study with He+ and Ne+ bombardment , 2012 .

[10]  Bene Poelsema,et al.  Channeling in helium ion microscopy: Mapping of crystal orientation , 2012, Beilstein journal of nanotechnology.

[11]  Hongzhou Zhang,et al.  Investigation of coupled cobalt-silver nanoparticle system by plan view TEM , 2012 .

[12]  J. Notte,et al.  The history and development of the helium ion microscope. , 2012, Scanning.

[13]  Emile van Veldhoven,et al.  Imaging and nanofabrication with the helium ion microscope of the Van Leeuwenhoek Laboratory in Delft. , 2012, Scanning.

[14]  K. Berggren,et al.  Modeling the point-spread function in helium-ion lithography. , 2012, Scanning.

[15]  R. Livengood,et al.  The prospects of a subnanometer focused neon ion beam. , 2012, Scanning.

[16]  Yu Ri Lee,et al.  Mixed colloidal suspensions of reduced graphene oxide and layered metal oxide nanosheets: useful precursors for the porous nanocomposites and hybrid films of graphene/metal oxide. , 2012, Chemistry.

[17]  D. Zhou,et al.  An investigation of nickel cobalt oxide nanorings using transmission electron, scanning electron and helium ion microscopy. , 2012, Journal of nanoscience and nanotechnology.

[18]  Reza Ansari,et al.  Mechanical properties of defective single-layered graphene sheets via molecular dynamics simulation , 2012 .

[19]  M. Radomski,et al.  The use of quartz crystal microbalance with dissipation (QCM-D) for studying nanoparticle-induced platelet aggregation , 2012, International journal of nanomedicine.

[20]  Minoru Osada,et al.  Two‐Dimensional Dielectric Nanosheets: Novel Nanoelectronics From Nanocrystal Building Blocks , 2012, Advanced materials.

[21]  D. Maas,et al.  Pulsed helium ion beam induced deposition: A means to high growth rates , 2011 .

[22]  H. Zhang,et al.  Spectroscopic and structural characterization of the formation of olefin metathesis initiating sites on unsupported β-Mo2C , 2011 .

[23]  Samuel M. Nicaise,et al.  Neon Ion Beam Lithography (NIBL). , 2011, Nano letters.

[24]  Tae Woo Kim,et al.  Cocatalyst‐Free Photocatalysts for Efficient Visible‐Light‐Induced H2 Production: Porous Assemblies of CdS Quantum Dots and Layered Titanate Nanosheets , 2011 .

[25]  Daining Fang,et al.  Mechanical and thermal transport properties of graphene with defects , 2011 .

[26]  L. Qin,et al.  Rapid and precise scanning helium ion microscope milling of solid-state nanopores for biomolecule detection , 2011, Nanotechnology.

[27]  D. Joy,et al.  Is Microanalysis Possible in the Helium Ion Microscope? , 2011, Microscopy and Microanalysis.

[28]  Atindra Nath Pal,et al.  High contrast imaging and thickness determination of graphene with in-column secondary electron microscopy , 2011, 1203.5983.

[29]  D. E. Bell Contrast Performance: Low Voltage Electrons vs. Helium Ions , 2011, Microscopy and Microanalysis.

[30]  Andreas Stemmer,et al.  Variations in the work function of doped single- and few-layer graphene assessed by Kelvin probe force microscopy and density functional theory , 2011 .

[31]  J. Coleman,et al.  Nitrogen assisted etching of graphene layers in a scanning electron microscope , 2011 .

[32]  J. Boland,et al.  Imaging of human colon cancer cells using He‐Ion scanning microscopy , 2011, Journal of microscopy.

[33]  N. Panwar,et al.  Role of renewable energy sources in environmental protection: A review , 2011 .

[34]  X. Zhao,et al.  Synthesis and Capacitive Properties of Manganese Oxide Nanosheets Dispersed on Functionalized Graphene Sheets , 2011 .

[35]  S. Jhi,et al.  Metal-dispersed porous graphene for hydrogen storage , 2011 .

[36]  Charles N. Archie,et al.  Review of current progress in nanometrology with the helium ion microscope , 2011 .

[37]  W. Regan,et al.  Grain boundary mapping in polycrystalline graphene. , 2011, ACS nano.

[38]  X. Jia,et al.  Graphene edges: a review of their fabrication and characterization. , 2011, Nanoscale.

[39]  Tarek Lutz,et al.  Nanoscale mapping of electrical resistivity and connectivity in graphene strips and networks. , 2011, Nano letters.

[40]  J. Cazaux Calculated dependence of few-layer graphene on secondary electron emissions from SiC , 2011 .

[41]  B. Bhanu,et al.  High-throughput large-area automated identification and quality control of graphene and few-layer graphene films. , 2011, ACS nano.

[42]  K. Suenaga,et al.  Atom-by-atom spectroscopy at graphene edge , 2010, Nature.

[43]  Q. Fu,et al.  Ion irradiation induced structural and electrical transition in graphene. , 2010, The Journal of chemical physics.

[44]  Renzhi Ma,et al.  Nanosheets of Oxides and Hydroxides: Ultimate 2D Charge‐Bearing Functional Crystallites , 2010, Advances in Materials.

[45]  Yu Huang,et al.  Fabrication and electrical properties of graphene nanoribbons , 2010 .

[46]  P. Klimov,et al.  Imaging stacking order in few-layer graphene. , 2010, Nano letters.

[47]  J. Boland,et al.  Effect of sample bias on backscattered ion spectroscopy in the helium ion microscope , 2010 .

[48]  W. Strupinski,et al.  High spatial resolution ellipsometer for characterization of epitaxial graphene. , 2010, Optics letters.

[49]  O. F. Vyvenko,et al.  Scanning helium ion microscope: Distribution of secondary electrons and ion channeling , 2010 .

[50]  Pinshane Y. Huang,et al.  Grains and grain boundaries in single-layer graphene atomic patchwork quilts , 2010, Nature.

[51]  Yuan Chen,et al.  Focused ion beam technology and application in failure analysis , 2010, 2010 11th International Conference on Electronic Packaging Technology & High Density Packaging.

[52]  Kang L. Wang,et al.  High-speed graphene transistors with a self-aligned nanowire gate , 2010, Nature.

[53]  D. Joy,et al.  Diffraction Imaging in a He+ Ion Beam Scanning Transmission Microscope , 2010, Microscopy and Microanalysis.

[54]  P. Papakonstantinou,et al.  Platinum Integrated Graphene for Methanol Fuel Cells , 2010 .

[55]  K. Loh,et al.  Making Patterns on Graphene , 2010, Advanced materials.

[56]  W. Wegscheider,et al.  Imaging ellipsometry of graphene , 2010, 1008.3206.

[57]  H. Hiura,et al.  Determination of the Number of Graphene Layers: Discrete Distribution of the Secondary Electron Intensity Stemming from Individual Graphene Layers , 2010, 1008.2039.

[58]  K. Novoselov,et al.  Direct determination of the crystallographic orientation of graphene edges by atomic resolution imaging , 2010 .

[59]  Jean-Christophe Charlier,et al.  Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications , 2010 .

[60]  P. Lambin,et al.  Nanopatterning of graphene with crystallographic orientation control , 2010 .

[61]  H. Dai,et al.  Etching and narrowing of graphene from the edges. , 2010, Nature chemistry.

[62]  P. Midgley,et al.  A practical approach to test the scope of FIB-SEM 3D reconstruction , 2010 .

[63]  J. Jinschek,et al.  Quantitative atomic 3-D imaging of single/double sheet graphene structure , 2010 .

[64]  Grégory Pandraud,et al.  DNA translocation through graphene nanopores. , 2010, Nano letters.

[65]  Wonbong Choi,et al.  Large-area graphene on polymer film for flexible and transparent anode in field emission device , 2010 .

[66]  Zhen Zhou,et al.  Two-dimensional polyphenylene: experimentally available porous graphene as a hydrogen purification membrane. , 2010, Chemical communications.

[67]  Yuyan Shao,et al.  Graphene Based Electrochemical Sensors and Biosensors: A Review , 2010 .

[68]  Bo Tang,et al.  Raman Spectroscopic Characterization of Graphene , 2010 .

[69]  B. Griffin,et al.  HELIUM ION MICROSCOPE , 2010 .

[70]  M. M. Lucchese,et al.  Quantifying ion-induced defects and Raman relaxation length in graphene , 2010 .

[71]  Levente Tapasztó,et al.  Crystallographically oriented high resolution lithography of graphene nanoribbons by STM lithography , 2010 .

[72]  R. Piner,et al.  Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity , 2010 .

[73]  C. Dimitrakopoulos,et al.  100-GHz Transistors from Wafer-Scale Epitaxial Graphene , 2010, Science.

[74]  L. Biró,et al.  Crystallographically selective nanopatterning of graphene on SiO2 , 2009, 0912.3092.

[75]  J. Notte,et al.  Understanding imaging modes in the helium ion microscope , 2009 .

[76]  Joel K. W. Yang,et al.  Scanning-helium-ion-beam lithography with hydrogen silsesquioxane resist , 2009 .

[77]  C. Marcus,et al.  Precision material modification and patterning with He ions , 2009 .

[78]  S. Dai,et al.  Porous graphene as the ultimate membrane for gas separation. , 2009, Nano letters.

[79]  R. Jones,et al.  p-type doping of graphene with F4-TCNQ , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[80]  H. Salemink,et al.  Sub-10-nm nanolithography with a scanning helium beam , 2009 .

[81]  C. W. Hagen,et al.  Resists for sub-20-nm electron beam lithography with a focus on HSQ: state of the art , 2009, Nanotechnology.

[82]  P. Lu,et al.  In situ observation of graphene sublimation and multi-layer edge reconstructions , 2009, Proceedings of the National Academy of Sciences.

[83]  W. Duan,et al.  Towards graphene nanoribbon-based electronics , 2009, 1002.4461.

[84]  Pablo Jarillo-Herrero,et al.  Etching of graphene devices with a helium ion beam. , 2009, ACS nano.

[85]  N. Peres Graphene, new physics in two dimensions , 2009 .

[86]  S. Ogawa,et al.  Material analysis with a helium ion microscope , 2009, 2009 IEEE International Reliability Physics Symposium.

[87]  J. Tour,et al.  Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons , 2009, Nature.

[88]  M. Osada,et al.  Exfoliated oxide nanosheets: new solution to nanoelectronics , 2009 .

[89]  V. Constantino,et al.  Layered niobate nanosheets: building blocks for advanced materials assembly , 2009 .

[90]  B. J. Inkson,et al.  Quantitative dopant contrast in the helium ion microscope , 2009 .

[91]  E. Sutter,et al.  Scanning tunneling microscopy on epitaxial bilayer graphene on ruthenium (0001) , 2009 .

[92]  O. Eriksson,et al.  Conductivity engineering of graphene by defect formation , 2009, 0905.1346.

[93]  Yoshio Watanabe,et al.  Dependence of electronic properties of epitaxial few-layer graphene on the number of layers investigated by photoelectron emission microscopy , 2009 .

[94]  B. J. Inkson,et al.  Dopant contrast in the helium ion microscope , 2009 .

[95]  S. Banerjee,et al.  Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric , 2009, 0901.2901.

[96]  P. San-Jose,et al.  Pseudospin valve in bilayer graphene: towards graphene-based pseudospintronics. , 2009, Physical review letters.

[97]  P. Lambin,et al.  Tuning the electronic structure of graphene by ion irradiation , 2008, 0901.3021.

[98]  D. Teweldebrhan,et al.  Modification of graphene properties due to electron-beam irradiation , 2008, 0812.0571.

[99]  B. Ward,et al.  Elemental analysis with the helium ion microscope , 2008 .

[100]  A. Bleloch,et al.  Free-standing graphene at atomic resolution. , 2008, Nature nanotechnology.

[101]  Michael T. Postek,et al.  Helium ion microscopy and its application to nanotechnology and nanometrology , 2008 .

[102]  K. Novoselov,et al.  Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane , 2008, Science.

[103]  P. Eklund,et al.  n-Type behavior of graphene supported on Si/SiO(2) substrates. , 2008, ACS nano.

[104]  M. Drndić,et al.  Electron beam nanosculpting of suspended graphene sheets , 2008, 0808.2974.

[105]  R. Hill,et al.  The ALIS He ion source and its application to high resolution microscopy , 2008 .

[106]  L. Scipioni Recent Applications Development with the Helium Ion Microscope , 2008, Microscopy and Microanalysis.

[107]  Xu Du,et al.  Approaching ballistic transport in suspended graphene. , 2008, Nature nanotechnology.

[108]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[109]  Kwang Soo Kim,et al.  Prediction of very large values of magnetoresistance in a graphene nanoribbon device. , 2008, Nature nanotechnology.

[110]  D. R. Strachan,et al.  Crystallographic etching of few-layer graphene. , 2008, Nano letters.

[111]  G. Flynn,et al.  Graphene oxidation: thickness-dependent etching and strong chemical doping. , 2008, Nano letters.

[112]  R. Piner,et al.  Scanning probe microscopy study of exfoliated oxidized graphene sheets , 2008 .

[113]  C. N. Lau,et al.  PROOF COPY 020815APL Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits , 2008 .

[114]  O. Eriksson,et al.  Defect formation in graphene nanosheets by acid treatment: an x-ray absorption spectroscopy and density functional theory study , 2008 .

[115]  H. Dai,et al.  Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors , 2008, Science.

[116]  Rodney S. Ruoff,et al.  Polymer−Graphite Nanocomposites:  Effective Dispersion and Major Property Enhancement via Solid-State Shear Pulverization , 2008 .

[117]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[118]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[119]  T. Mallouk,et al.  Direct deposition of trivalent rhodium hydroxide nanoparticles onto a semiconducting layered calcium niobate for photocatalytic hydrogen evolution. , 2008, Nano letters.

[120]  J. Kedzierski,et al.  Epitaxial Graphene Transistors on SiC Substrates , 2008, IEEE Transactions on Electron Devices.

[121]  F. M. Peeters,et al.  Adsorption of H 2 O , N H 3 , CO, N O 2 , and NO on graphene: A first-principles study , 2007, 0710.1757.

[122]  Tohru Ishitani,et al.  Simulation study on image contrast and spatial resolution in helium ion microscope. , 2007, Journal of electron microscopy.

[123]  M. Miyayama,et al.  Electrochemical Properties of Lithium Titanate Synthesized by Reassembly of Nanosheets , 2007 .

[124]  Raymond Hill,et al.  An Introduction to the Helium Ion Microscope. , 2007 .

[125]  Michael T. Postek,et al.  The helium ion microscope: a new tool for nanomanufacturing , 2007, SPIE NanoScience + Engineering.

[126]  S. Sarma,et al.  Measurement of scattering rate and minimum conductivity in graphene. , 2007, Physical review letters.

[127]  C. Hierold,et al.  Raman imaging of graphene , 2007 .

[128]  W. K. Chan,et al.  Field effect in epitaxial graphene on a silicon carbide substrate , 2007 .

[129]  S. Stankovich,et al.  Simple Approach for High-Contrast Optical Imaging and Characterization of Graphene-Based Sheets , 2007, 0706.0029.

[130]  K. Novoselov,et al.  Rayleigh imaging of graphene and graphene layers. , 2007, Nano letters.

[131]  R. Ma,et al.  Colloidal unilamellar layers of tantalum oxide with open channels. , 2007, Inorganic chemistry.

[132]  A. Neto,et al.  Making graphene visible , 2007, Applied Physics Letters.

[133]  David C. Joy,et al.  Device metrology with high-performance scanning ion beams , 2007, SPIE Advanced Lithography.

[134]  M. I. Katsnelson,et al.  Graphene: New bridge between condensed matter physics and quantum electrodynamics , 2007, cond-mat/0703374.

[135]  Oleg V. Yazyev,et al.  Defect-induced magnetism in graphene , 2007 .

[136]  Aachen,et al.  A Graphene Field-Effect Device , 2007, IEEE Electron Device Letters.

[137]  Vladimir Fal'ko,et al.  The Focusing of Electron Flow and a Veselago Lens in Graphene p-n Junctions , 2007, Science.

[138]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[139]  P. Kim,et al.  Energy band-gap engineering of graphene nanoribbons. , 2007, Physical review letters.

[140]  Scott S. Verbridge,et al.  Electromechanical Resonators from Graphene Sheets , 2007, Science.

[141]  M. Rooks,et al.  Graphene nano-ribbon electronics , 2007, cond-mat/0701599.

[142]  Nicholas P. Economou,et al.  Helium ion microscope: A new tool for nanoscale microscopy and metrology , 2006 .

[143]  S. Louie,et al.  Half-metallic graphene nanoribbons , 2006, Nature.

[144]  F. Guinea,et al.  Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. , 2006, Physical review letters.

[145]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[146]  K. Novoselov,et al.  Detection of individual gas molecules adsorbed on graphene. , 2006, Nature materials.

[147]  R. Ma,et al.  Exfoliating layered double hydroxides in formamide: a method to obtain positively charged nanosheets , 2006 .

[148]  Raymond Hill,et al.  An Introduction to the Helium Ion Microscope , 2006, Microscopy Today.

[149]  T. Sasaki,et al.  Photocatalytic decomposition of an alkylammonium cation in a Langmuir-Blodgett film of a titania nanosheet. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[150]  M. Miyayama,et al.  Lithium intercalation properties of octatitanate synthesized through exfoliation/reassembly. , 2006, The journal of physical chemistry. B.

[151]  P. Aranda,et al.  A Colloidal Route for Delamination of Layered Solids: Novel Porous‐Clay Nanocomposites , 2006 .

[152]  M. Osada,et al.  Gigantic Magneto–Optical Effects in Multilayer Assemblies of Two‐Dimensional Titania Nanosheets , 2006 .

[153]  Yasushi Murakami,et al.  Fabrication of Thin-Film, Flexible, and Transparent Electrodes Composed of Ruthenic Acid Nanosheets by Electrophoretic Deposition and Application to Electrochemical Capacitors , 2006 .

[154]  J. Robertson High dielectric constant gate oxides for metal oxide Si transistors , 2006 .

[155]  T. Sasaki,et al.  Photocatalyst of lamellar aggregates of RuOx-loaded perovskite nanosheets for overall water splitting. , 2005, The journal of physical chemistry. B.

[156]  Andreas Schüler,et al.  Nanostructured materials for solar energy conversion , 2005 .

[157]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[158]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[159]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[160]  Y. Ebina,et al.  A New Mesoporous Manganese Oxide Pillared with Double Layers of Alumina , 2004 .

[161]  M. Malac,et al.  Radiation damage in the TEM and SEM. , 2004, Micron.

[162]  Kazunori Takada,et al.  Electronic band structure of titania semiconductor nanosheets revealed by electrochemical and photoelectrochemical studies. , 2004, Journal of the American Chemical Society.

[163]  T. Sasaki,et al.  Ultrathin films and hollow shells with pillared architectures fabricated via layer-by-layer self-assembly of titania nanosheets and aluminum Keggin ions , 2004 .

[164]  T. Sasaki,et al.  Inorganic Multilayer Assembly of Titania Semiconductor Nanosheets and Ru Complexes , 2003 .

[165]  W. Sugimoto,et al.  Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage. , 2003, Angewandte Chemie.

[166]  T. Sasaki,et al.  First-Principles Study of Two-Dimensional Titanium Dioxides , 2003 .

[167]  S. Jana,et al.  Mechanism of Exfoliation of Nanoclay Particles in Epoxy−Clay Nanocomposites , 2003 .

[168]  Mamoru Watanabe,et al.  Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide. , 2003, Journal of the American Chemical Society.

[169]  W. Sugimoto,et al.  Electrophoretic deposition of negatively charged tetratitanate nanosheets and transformation into preferentially oriented TiO2(B) film , 2002 .

[170]  Mamoru Watanabe,et al.  Preparation and characterizations of Fe- or Ni-substituted titania nanosheets as photocatalysts , 2002 .

[171]  T. Sasaki,et al.  Two-Dimensional Diffraction of Molecular Nanosheet Crystallites of Titanium Oxide , 2001 .

[172]  R. Wallace,et al.  High-κ gate dielectrics: Current status and materials properties considerations , 2001 .

[173]  K. Asai,et al.  Alternate Multilayer Deposition from Ammonium Amphiphiles and Titanium Dioxide Crystalline Nanosheets Using the Langmuir−Blodgett Technique , 2001 .

[174]  Jon-Paul Maria,et al.  Alternative dielectrics to silicon dioxide for memory and logic devices , 2000, Nature.

[175]  H. Kanoh,et al.  Swelling and Delamination Behaviors of Birnessite-Type Manganese Oxide by Intercalation of Tetraalkylammonium Ions , 2000 .

[176]  Caruso,et al.  Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating , 1998, Science.

[177]  T. Sasaki,et al.  Osmotic Swelling to Exfoliation. Exceptionally High Degrees of Hydration of a Layered Titanate , 1998 .

[178]  T. Sasaki,et al.  Semiconductor Nanosheet Crystallites of Quasi-TiO2 and Their Optical Properties , 1997 .

[179]  Gero Decher,et al.  Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites , 1997 .

[180]  Mamoru Watanabe,et al.  Macromolecule-like Aspects for a Colloidal Suspension of an Exfoliated Titanate. Pairwise Association of Nanosheets and Dynamic Reassembling Process Initiated from It , 1996 .

[181]  L. Nazar,et al.  Aluminum and gallium oxide-pillared molybdenum oxide (MoO3) , 1991 .

[182]  S. Morrison,et al.  Single-layer MoS2 , 1986 .

[183]  G. Alberti,et al.  Inorganic ion-exchange pellicles obtained by delamination of α-zirconium phosphate crystals , 1985 .

[184]  B. Raveau,et al.  Intercalation of alkylammonium ions and oxide layers |TiNbOt|− , 1980 .

[185]  A. Lerf,et al.  Solvation reactions of layered ternary sulfides AxTiS2, AxNbS2, and AxTaS2 , 1977 .

[186]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[187]  G. Walker Macroscopic Swelling of Vermiculite Crystals in Water , 1960, Nature.

[188]  S. Adhikari,et al.  Graphene-based biosensor using transport properties , 2011 .

[189]  David B. Williams,et al.  Lenses, Apertures, and Resolution , 2009 .

[190]  J. Warner,et al.  Direct imaging of rotational stacking faults in few layer graphene. , 2009, Nano letters.

[191]  K. Müllen,et al.  Transparent, conductive graphene electrodes for dye-sensitized solar cells. , 2008, Nano letters.

[192]  D. Bell,et al.  Helium ion microscope: advanced contrast mechanisms for imaging and analysis of nanomaterials , 2008 .

[193]  J. Sambles,et al.  Slow waves caused by cuts perpendicular to a single subwavelength slit in metal , 2007 .

[194]  F. Caruso Hollow Inorganic Capsules via Colloid-Templated Layer-by-Layer Electrostatic Assembly , 2003 .

[195]  T. Hibino,et al.  New approach to the delamination of layereddouble hydroxides , 2001 .

[196]  T. Nakato,et al.  Intercalation compound of VOPO4.2H2O with acrylamide: preparation and exfoliation , 2001 .

[197]  T. Sasaki,et al.  Synthesis and characterization of a new mesoporous alumina-pillared titanate with a double-layer arrangement structure , 2000 .

[198]  J. Besse,et al.  Delamination of layered double hydroxides by use of surfactants , 2000 .

[199]  J. Pannetier,et al.  Localization of hydrogen in the layer oxide HTiNbO5 , 1982 .