Cavity magnonics with easy-axis ferromagnets: Critically enhanced magnon squeezing and light-matter interaction

Generating and probing the magnon squeezing is an important challenge in the field of quantum magnonics. In this work, we propose a cavity magnonics setup with an easy-axis ferromagnet to address this challenge. To this end, we first establish a mechanism for the generation of magnon squeezing in the easy-axis ferromagnet and show that the magnon squeezing can be critically enhanced by tuning an external magnetic field near the Ising phase transition point. When the magnet is coupled to the cavity field, the effective cavity-magnon interaction becomes proportional to the magnon squeezing, allowing one to enhance the cavity-magnon coupling strength using a static field. We demonstrate that the magnon squeezing can be probed by measuring the frequency shift of the cavity field. Moreover, a magnonic superradiant phase transition can be observed in our setup by tuning the static magnetic field, overcoming the challenge that the magnetic interaction between the cavity and the magnet is typically too weak to drive the superradiant transition. Our work paves the way to develop unique capabilities of cavity magnonics that goes beyond the conventional cavity QED physics by harnessing the intrinsic property of a magnet.

[1]  J. You,et al.  Quantum Control of a Single Magnon in a Macroscopic Spin System. , 2022, Physical review letters.

[2]  Wen-Xing Yang,et al.  Tunable magnon antibunching via degenerate three-wave mixing in a hybrid ferromagnet–superconductor system , 2022, Applied Physics Letters.

[3]  Kei Suzuki,et al.  Magnonic Casimir Effect in Ferrimagnets. , 2022, Physical review letters.

[4]  Y. Blanter,et al.  Analog Quantum Control of Magnonic Cat States on a Chip by a Superconducting Qubit. , 2022, Physical review letters.

[5]  Se Kwon Kim,et al.  Topological phase transition in magnon bands in a honeycomb ferromagnet driven by sublattice symmetry breaking , 2022, Physical Review B.

[6]  Zhanghua Wu,et al.  Tunable magnon antibunching in a hybrid ferromagnet-superconductor system with two qubits , 2021, Physical Review B.

[7]  W. Porod,et al.  Advances in Magnetics Roadmap on Spin-Wave Computing , 2021, IEEE Transactions on Magnetics.

[8]  Q. Gong,et al.  Remote Generation of Magnon Schrödinger Cat State via Magnon-Photon Entanglement. , 2021, Physical review letters.

[9]  A. Adeyeye,et al.  Functional magnetic waveguides for magnonics , 2021, Applied Physics Letters.

[10]  Vahid Azimi Mousolou,et al.  Magnon-magnon entanglement and its quantification via a microwave cavity , 2021, Physical Review B.

[11]  A. Karenowska,et al.  Spin cat states in ferromagnetic insulators , 2021 .

[12]  D. Zueco,et al.  Photon Condensation and Enhanced Magnetism in Cavity QED. , 2020, Physical review letters.

[13]  A. Nazir,et al.  Uniqueness of the Phase Transition in Many-Dipole Cavity Quantum Electrodynamical Systems. , 2020, Physical review letters.

[14]  A. Brataas,et al.  Magnon-squeezing as a niche of quantum magnonics , 2020, Applied Physics Letters.

[15]  J. Kono,et al.  Magnonic superradiant phase transition , 2020, Communications Physics.

[16]  B. Hillebrands,et al.  A nonlinear magnonic nano-ring resonator , 2020, npj Computational Materials.

[17]  R. Duine,et al.  Magnon antibunching in a nanomagnet , 2020, 2005.13637.

[18]  Fuli Li,et al.  Quantum-interference-enhanced magnon blockade in an yttrium-iron-garnet sphere coupled to superconducting circuits , 2020 .

[19]  Alexandre Blais,et al.  Quantum information processing and quantum optics with circuit quantum electrodynamics , 2020, Nature Physics.

[20]  P. Wei,et al.  Spin current from sub-terahertz-generated antiferromagnetic magnons , 2020, Nature.

[21]  Yasunobu Nakamura,et al.  Entanglement-based single-shot detection of a single magnon with a superconducting qubit , 2019, Science.

[22]  Y. Tserkovnyak,et al.  Tuning entanglement by squeezing magnons in anisotropic magnets , 2019, Physical Review B.

[23]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[24]  G. Agarwal,et al.  Squeezed Light Induced Symmetry Breaking Superradiant Phase Transition. , 2019, Physical review letters.

[25]  C. Adelmann,et al.  A magnonic directional coupler for integrated magnonic half-adders , 2019, Nature Electronics.

[26]  R. Duine,et al.  Antiferromagnetic magnons as highly squeezed Fock states underlying quantum correlations , 2019, Physical Review B.

[27]  W. Han,et al.  Magnon Transport in Quasi-Two-Dimensional van der Waals Antiferromagnets , 2019, Physical Review X.

[28]  F. Nori,et al.  Resolution of gauge ambiguities in ultrastrong-coupling cavity quantum electrodynamics , 2018, Nature Physics.

[29]  Franco Nori,et al.  Ultrastrong coupling between light and matter , 2018, Nature Reviews Physics.

[30]  M. Stone,et al.  Topological Spin Excitations in Honeycomb Ferromagnet CrI3 , 2018, Physical Review X.

[31]  E. Rico,et al.  Ultrastrong coupling regimes of light-matter interaction , 2018, Reviews of Modern Physics.

[32]  Di Xiao,et al.  Interlayer Couplings Mediated by Antiferromagnetic Magnons. , 2018, Physical review letters.

[33]  K. Kamazawa,et al.  Topological spin excitations in a three-dimensional antiferromagnet , 2017, Nature Physics.

[34]  Franco Nori,et al.  Exponentially Enhanced Light-Matter Interaction, Cooperativities, and Steady-State Entanglement Using Parametric Amplification. , 2017, Physical review letters.

[35]  A. Clerk,et al.  Enhancing Cavity Quantum Electrodynamics via Antisqueezing: Synthetic Ultrastrong Coupling. , 2017, Physical review letters.

[36]  D. Loss,et al.  Magnonic topological insulators in antiferromagnets , 2017, 1707.07427.

[37]  Yasunobu Nakamura,et al.  Resolving quanta of collective spin excitations in a millimeter-sized ferromagnet , 2017, Science Advances.

[38]  A. Serga,et al.  Magnonic crystals for data processing , 2017, 1702.06701.

[39]  Michael Marthaler,et al.  Analog quantum simulation of the Rabi model in the ultra-strong coupling regime , 2016, Nature Communications.

[40]  N. Langford,et al.  Experimentally simulating the dynamics of quantum light and matter at deep-strong coupling , 2016, Nature Communications.

[41]  W. Belzig,et al.  Super-Poissonian Shot Noise of Squeezed-Magnon Mediated Spin Transport. , 2016, Physical review letters.

[42]  S. Owerre A first theoretical realization of honeycomb topological magnon insulator , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[43]  D. Nocera,et al.  Topological Magnon Bands in a Kagome Lattice Ferromagnet. , 2015, Physical review letters.

[44]  A. Serga,et al.  Magnon spintronics , 2015, Nature Physics.

[45]  R. Duine,et al.  Long-distance transport of magnon spin information in a magnetic insulator at room temperature , 2015, Nature Physics.

[46]  A. Baksic,et al.  Ancillary qubit spectroscopy of vacua in cavity and circuit quantum electrodynamics. , 2015, Physical review letters.

[47]  T. Ogawa,et al.  Stability of polarizable materials against superradiant phase transition , 2014, 1406.2420.

[48]  A. Serga,et al.  Bose–Einstein condensation in an ultra-hot gas of pumped magnons , 2014, Nature Communications.

[49]  P. Domokos,et al.  Elimination of the A-square problem from cavity QED. , 2013, Physical review letters.

[50]  Jian-Sheng Wang,et al.  Topological Magnon Insulator in Insulating Ferromagnet , 2012, 1210.3487.

[51]  A. Serga,et al.  Direct detection of magnon spin transport by the inverse spin Hall effect , 2011, 1112.4969.

[52]  F. Marquardt,et al.  Superradiant phase transitions and the standard description of circuit QED. , 2011, Physical review letters.

[53]  V. Zapf,et al.  Bose Einstein Condensation in Quantum Magnets , 2011 .

[54]  L. Bishop Circuit quantum electrodynamics , 2010, 1007.3520.

[55]  Y. Bunkov,et al.  Magnon Bose–Einstein condensation and spin superfluidity , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[56]  Christine Guerlin,et al.  Dicke quantum phase transition with a superfluid gas in an optical cavity , 2009, Nature.

[57]  Erik Lucero,et al.  Synthesizing arbitrary quantum states in a superconducting resonator , 2009, Nature.

[58]  T. Giamarchi,et al.  Bose–Einstein condensation in magnetic insulators , 2007, 0712.2250.

[59]  A. Serga,et al.  Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping , 2006, Nature.

[60]  S. Girvin,et al.  Resolving photon number states in a superconducting circuit , 2006, Nature.

[61]  D. J. Lockwood,et al.  Magnon squeezing in antiferromagnetic MnF2 and FeF2 , 2006 .

[62]  D. J. Lockwood,et al.  Magnon squeezing in an antiferromagnet: reducing the spin noise below the standard quantum limit. , 2003, Physical review letters.

[63]  Clive Emary,et al.  Quantum chaos triggered by precursors of a quantum phase transition: the dicke model. , 2002, Physical review letters.

[64]  M. Lavagna Quantum phase transitions , 2001, cond-mat/0102119.

[65]  T. Nikuni,et al.  Bose-Einstein condensation of dilute magnons in TlCuCl3. , 1999, Physical review letters.

[66]  Neuberger,et al.  Finite-size effects in Heisenberg antiferromagnets. , 1989, Physical review. B, Condensed matter.

[67]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[68]  H. Lipkin,et al.  Validity of many-body approximation methods for a solvable model: (I). Exact solutions and perturbation theory , 1965 .

[69]  H. Primakoff,et al.  Field dependence of the intrinsic domain magnetization of a ferromagnet , 1940 .

[70]  M. Stone,et al.  Topological Spin Excitations in Honeycomb Ferromagnet CrI , 2018 .

[71]  S. Blundell Magnetism in Condensed Matter , 2001 .

[72]  R. Dicke Coherence in Spontaneous Radiation Processes , 1954 .