Linear Extensions of Ordered Sets

The best known connection between partial orders and linear orders is the Szpilrajn theorem: Any partial order on a set can be extended to a linear order on the same set. From this, it follows that any partial order is the intersection of its linear extensions; equivalently, every ordered set can be represented as some subset of a Cartesian product of chains.

[1]  G. Birkhoff Rings of sets , 1937 .

[2]  Frank Plumpton Ramsey,et al.  On a Problem of Formal Logic , 1930 .

[3]  E. Szpilrajn Sur l'extension de l'ordre partiel , 1930 .

[4]  Miklós Simonovits,et al.  Spanning retracts of a partially ordered set , 1980, Discret. Math..

[5]  Richard Laver,et al.  On Fraisse's order type conjecture , 1971 .

[6]  Richard Laver,et al.  An Order Type Decomposition Theorem , 1973 .

[7]  James E. Baumgartner,et al.  Αll $ℵ_1$-dense sets of reals can be isomorphic , 1973 .

[8]  Graham Higman,et al.  Ordering by Divisibility in Abstract Algebras , 1952 .

[9]  T. Hiraguchi On the Dimension of Orders , 1955 .

[10]  Andrzej Ehrenfeucht,et al.  Models of axiomatic theories admitting automorphisms , 1956 .

[11]  A. Gleyzal Order types and structure of orders , 1940 .

[12]  Ben Dushnik,et al.  Partially Ordered Sets , 1941 .

[13]  George N. Raney,et al.  Completely distributive complete lattices , 1952 .

[14]  H. M. Macneille,et al.  Partially ordered sets , 1937 .

[15]  On the lexicographic product of ordered sets , 1965 .

[16]  R. Bonnet Very strongly rigid Boolean algebras continuum discrete set condition countable antichain condition (I) , 1980 .

[17]  P. Erdös,et al.  A Partition Calculus in Set Theory , 1956 .

[18]  E. C. Milner,et al.  Some theorems for scattered ordered sets , 1971 .

[19]  O. Ore Theory of Graphs , 1962 .

[20]  Maurice Pouzet,et al.  Which ordered sets have a complete linear extension , 1981 .

[21]  Garrett Birkhoff An extended arithmetic , 1937 .

[22]  Joseph B. Kruskal,et al.  The Theory of Well-Quasi-Ordering: A Frequently Discovered Concept , 1972, J. Comb. Theory A.

[23]  E. S. Wolk Partially well ordered sets and partial ordinals , 1967 .

[24]  M. Day Arithmetic of ordered systems , 1945 .

[25]  T. Hiraguchi On the Dimension of Partially Ordered Sets. , 1951 .

[26]  P. Erdös,et al.  A combinatorial theorem , 1950 .

[27]  Paul Erdös,et al.  On a classification of denumerable order types and an application to the partition calculus , 1962 .

[28]  Jürgen Schmidt,et al.  Zur Kennzeichnung der Dedekind-MacNeilleschen HÜlle einer geordneten HÜlle , 1956 .

[29]  Bernhard Banaschewski,et al.  Hüllensysteme und Erweiterung von Quasi‐Ordnungen , 1956 .

[30]  H. Komm,et al.  On the Dimension of Partially Ordered Sets , 1948 .

[31]  R. P. Dilworth,et al.  A DECOMPOSITION THEOREM FOR PARTIALLY ORDERED SETS , 1950 .

[32]  Dick H. J. Jongh,et al.  Well-partial orderings and hierarchies , 1977 .