Entropy and Information Theory

This book is an updated version of the information theory classic, first published in 1990. About one-third of the book is devoted to Shannon source and channel coding theorems; the remainder addresses sources, channels, and codes and on information and distortion measures and their properties. New in this edition:Expanded treatment of stationary or sliding-block codes and their relations to traditional block codesExpanded discussion of results from ergodic theory relevant to information theoryExpanded treatment of B-processes -- processes formed by stationary coding memoryless sourcesNew material on trading off information and distortion, including the Marton inequalityNew material on the properties of optimal and asymptotically optimal source codesNew material on the relationships of source coding and rate-constrained simulation or modeling of random processesSignificant material not covered in other information theory texts includes stationary/sliding-block codes, a geometric view of information theory provided by process distance measures, and general Shannon coding theorems for asymptotic mean stationary sources, which may be neither ergodic nor stationary, and d-bar continuous channels.

[1]  G. Birkhoff Proof of the Ergodic Theorem , 1931, Proceedings of the National Academy of Sciences.

[2]  J. Neumann Zur Operatorenmethode In Der Klassischen Mechanik , 1932 .

[3]  Shizuo Kakutani,et al.  131. Induced Measure Preserving Transformations , 1943 .

[4]  B. McMillan The Basic Theorems of Information Theory , 1953 .

[5]  Amiel Feinstein,et al.  A new basic theorem of information theory , 1954, Trans. IRE Prof. Group Inf. Theory.

[6]  P. Halmos Lectures on ergodic theory , 1956 .

[7]  D. Slepian A class of binary signaling alphabets , 1956 .

[8]  L. Breiman The Individual Ergodic Theorem of Information Theory , 1957 .

[9]  P. Elias,et al.  Two famous papers (Edtl.) , 1958 .

[10]  S. Kullback,et al.  Information Theory and Statistics , 1959 .

[11]  Amiel Feinstein On the coding theorem and its converse for finite-memory channels , 1959 .

[12]  K. Jacobs Die Übertragung diskreter Informationen durch periodische und fastperiodische Kanäle , 1959 .

[13]  I. G. BONNER CLAPPISON Editor , 1960, The Electric Power Engineering Handbook - Five Volume Set.

[14]  Jacob Wolfowitz,et al.  A Note on the Strong Converse of the Coding Theorem for the General Discrete Finite-Memory Channel , 1960, Inf. Control..

[15]  Mill Johannes G.A. Van,et al.  Transmission Of Information , 1961 .

[16]  R. Adler Ergodic and mixing properties of infinite memory channels , 1961 .

[17]  Shu-Teh Chen Moy,et al.  Generalizations of Shannon-McMillan theorem , 1961 .

[18]  Jacob Wolfowitz Coding Theorems of Information Theory , 1962 .

[19]  K. Jacobs Über die Struktur der mittleren Entropie , 1962 .

[20]  C. Caramanis What is ergodic theory , 1963 .

[21]  Vladimir I. Levenshtein,et al.  Binary codes capable of correcting deletions, insertions, and reversals , 1965 .

[22]  I. Good,et al.  Ergodic theory and information , 1966 .

[23]  Toby Berger Rate Distortion Theory for Sources with Abstract Alphabets and Memory , 1968, Inf. Control..

[24]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[25]  R. Gallager Information Theory and Reliable Communication , 1968 .

[26]  T. T. Kadota Generalization of Feinstein's fundamental lemma (Corresp.) , 1970, IEEE Trans. Inf. Theory.

[27]  D. Ornstein Bernoulli shifts with the same entropy are isomorphic , 1970 .

[28]  N. Friedman,et al.  Introduction to Ergodic Theory , 1971 .

[29]  Rudolf Ahlswede,et al.  CHANNELS WITHOUT SYNCHRONIZATION , 1971 .

[30]  Richard E. Blahut,et al.  Computation of channel capacity and rate-distortion functions , 1972, IEEE Trans. Inf. Theory.

[31]  J. Kieffer A Counterexample to Perez's Generalization of the Shannon-McMillan Theorem , 1973 .

[32]  D. Ornstein An Application of Ergodic Theory to Probability Theory , 1973 .

[33]  P. Shields The theory of Bernoulli shifts , 1973 .

[34]  Barry M. Leiner,et al.  Bounds on rate-distortion functions for stationary sources and context-dependent fidelity criteria (Corresp.) , 1973, IEEE Trans. Inf. Theory.

[35]  Jr. G. Forney,et al.  The viterbi algorithm , 1973 .

[36]  Robert M. Gray,et al.  Source coding theorems without the ergodic assumption , 1974, IEEE Trans. Inf. Theory.

[37]  John C. Kieffer,et al.  A General Formula for the Capacity of Stationary Nonanticipatory Channels , 1974, Inf. Control..

[38]  D. Ornstein Ergodic theory, randomness, and dynamical systems , 1974 .

[39]  S. Varadhan,et al.  Asymptotic evaluation of certain Markov process expectations for large time , 1975 .

[40]  David L. Neuhoff,et al.  Fixed rate universal block source coding with a fidelity criterion , 1975, IEEE Trans. Inf. Theory.

[41]  R. Gray,et al.  Nonblock Source Coding with a Fidelity Criterion , 1975 .

[42]  I. Csiszár $I$-Divergence Geometry of Probability Distributions and Minimization Problems , 1975 .

[43]  John C. Kieffer On the optimum average distortion attainable by fixed-rate coding of a nonergodic source , 1975, IEEE Trans. Inf. Theory.

[44]  David L. Neuhoff,et al.  Process definitions of distortion-rate functions and source coding theorems , 1975, IEEE Trans. Inf. Theory.

[45]  P. Walters Ergodic theory: Introductory lectures , 1975 .

[46]  R. Gray,et al.  A Generalization of Ornstein's $\bar d$ Distance with Applications to Information Theory , 1975 .

[47]  Rudolf Ahlswede,et al.  Two contributions to information theory , 1975 .

[48]  Robert M. Gray,et al.  Sliding-block joint source/noisy-channel coding theorems , 1976, IEEE Trans. Inf. Theory.

[49]  James R. Brown,et al.  Ergodic theory and topological dynamics , 1976 .

[50]  K. Sigmund,et al.  Ergodic Theory on Compact Spaces , 1976 .

[51]  A. Maitra,et al.  Integral representations of invariant measures , 1977 .

[52]  David L. Neuhoff,et al.  Block and sliding-block source coding , 1977, IEEE Trans. Inf. Theory.

[53]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[54]  John C. Kieffer A generalization of the Pursley-Davisson- Mackenthun universal variable-rate coding theorem , 1977, IEEE Trans. Inf. Theory.

[55]  Edward C. van der Meulen,et al.  A survey of multi-way channels in information theory: 1961-1976 , 1977, IEEE Trans. Inf. Theory.

[56]  Robert J. McEliece,et al.  The Theory of Information and Coding , 1979 .

[57]  Sui Tung,et al.  Multiterminal source coding (Ph.D. Thesis abstr.) , 1978, IEEE Trans. Inf. Theory.

[58]  James George Dunham A note on the abstract alphabet block source coding with a fidelity criterion theorem (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[59]  John C. Kieffer,et al.  A unified approach to weak universal source coding , 1978, IEEE Trans. Inf. Theory.

[60]  Aaron D. Wyner,et al.  A Definition of Conditional Mutual Information for Arbitrary Ensembles , 1978, Inf. Control..

[61]  David L. Neuhoff,et al.  Channels with almost finite memory , 1979, IEEE Trans. Inf. Theory.

[62]  R. Gray,et al.  Robustness of Estimators on Stationary Observations , 1979 .

[63]  Andrew J. Viterbi,et al.  Principles of Digital Communication and Coding , 1979 .

[64]  D. S. Jones,et al.  Elementary information theory , 1979 .

[65]  John C. Kieffer,et al.  Extension of source coding theorems for block codes to sliding-block codes , 1980, IEEE Trans. Inf. Theory.

[66]  A. El Gamal,et al.  Multiple user information theory , 1980, Proceedings of the IEEE.

[67]  R. Gray,et al.  Asymptotically Mean Stationary Measures , 1980 .

[68]  John C. Kieffer,et al.  Block coding for weakly continuous channels , 1981, IEEE Trans. Inf. Theory.

[69]  Alan D. Sokal,et al.  Existence of compatible families of proper regular conditional probabilities , 1981 .

[70]  J. Kieffer,et al.  Markov Channels are Asymptotically Mean Stationary , 1981 .

[71]  G. Koumoullis On perfect measures , 1981 .

[72]  Michael B. Pursley,et al.  Efficient universal noiseless source codes , 1981, IEEE Trans. Inf. Theory.

[73]  David L. Neuhoff,et al.  Channel Entropy and Primitive Approximation , 1982 .

[74]  David L. Neuhoff,et al.  Indecomposable finite state channels and primative approximation , 1982, IEEE Trans. Inf. Theory.

[75]  David L. Neuhoff,et al.  Channel Distances and Representation , 1982, Inf. Control..

[76]  John C. Kieffer,et al.  Sliding-block coding for weakly continuous channels , 1982, IEEE Trans. Inf. Theory.

[77]  David L. Neuhoff,et al.  Causal source codes , 1982, IEEE Trans. Inf. Theory.

[78]  V. Cuperman,et al.  Vector quantization: A pattern-matching technique for speech coding , 1983, IEEE Communications Magazine.

[79]  R. Blahut Theory and practice of error control codes , 1983 .

[80]  D. Ornstein,et al.  The Shannon-McMillan-Breiman theorem for a class of amenable groups , 1983 .

[81]  M. Hassner,et al.  Algorithms for sliding block codes - An application of symbolic dynamics to information theory , 1983, IEEE Trans. Inf. Theory.

[82]  Robert M. Gray,et al.  Block source coding theory for asymptotically mean stationary sources , 1984, IEEE Trans. Inf. Theory.

[83]  R. Gray,et al.  Vector quantization , 1984, IEEE ASSP Magazine.

[84]  S. Varadhan Large Deviations and Applications , 1984 .

[85]  A. Barron THE STRONG ERGODIC THEOREM FOR DENSITIES: GENERALIZED SHANNON-MCMILLAN-BREIMAN THEOREM' , 1985 .

[86]  K. H. Barratt Digital Coding of Waveforms , 1985 .

[87]  Brian H. Marcus,et al.  Sofic systems and encoding data , 1985, IEEE Trans. Inf. Theory.

[88]  J. Makhoul,et al.  Vector quantization in speech coding , 1985, Proceedings of the IEEE.

[89]  Robert M. Gray,et al.  The design of joint source and channel trellis waveform coders , 1987, IEEE Trans. Inf. Theory.

[90]  Robert M. Gray,et al.  Ergodicity of Markov channels , 1987, IEEE Trans. Inf. Theory.

[91]  Paul C. Shields,et al.  The ergodic and entropy theorems revisited , 1987, IEEE Trans. Inf. Theory.

[92]  G.G. Langdon,et al.  Data compression , 1988, IEEE Potentials.

[93]  James A. Bucklew,et al.  A large deviation theory proof of the abstract alphabet source coding theorem , 1988, IEEE Trans. Inf. Theory.

[94]  T. Cover,et al.  A sandwich proof of the Shannon-McMillan-Breiman theorem , 1988 .

[95]  R. Gray Source Coding Theory , 1989 .

[96]  J. Kieffer An ergodic theorem for constrained sequences of functions , 1989 .

[97]  Robert M. Gray,et al.  Spectral analysis of quantization noise in a single-loop sigma-delta modulator with DC input , 1989, IEEE Trans. Commun..

[98]  P. Gács,et al.  KOLMOGOROV'S CONTRIBUTIONS TO INFORMATION THEORY AND ALGORITHMIC COMPLEXITY , 1989 .

[99]  John C. Kieffer,et al.  Sample converses in source coding theory , 1991, IEEE Trans. Inf. Theory.

[100]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[101]  Allen Gersho,et al.  Vector quantization and signal compression , 1991, The Kluwer international series in engineering and computer science.