Thermal drift reduction with multiple bias current for MOSFET dosimeters.

New thermal compensation methods suitable for p-channel MOSFET (pMOS) dosimeters with the usual dose readout procedure based on a constant drain current are presented. Measuring the source-drain voltage shifts for two or three different drain currents and knowing the value of the zero-temperature coefficient drain current, I(ZTC), the thermal drift of source-drain or threshold voltages can be significantly reduced. Analytical expressions for the thermal compensation have been theoretically deduced on the basis of a linear dependence on temperature of the parameters involved. The proposed thermal modelling has been experimentally proven. These methods have been applied to a group of ten commercial pMOS transistors (3N163). The thermal coefficients of the source-drain voltage and the threshold voltage were reduced from -3.0 mV  °C(-1), in the worst case, down to -70 µV  °C(-1). This means a thermal drift of -2.4 mGy  °C(-1) for the dosimeter. When analysing the thermal drifts of all the studied transistors, in the temperature range from 19 to 36 °C, uncertainty was obtained in the threshold voltage due to a thermal drift of ±9 mGy (2 SD), a commonly acceptable value in most radiotherapy treatments. The procedures described herein provide thermal drift reduction comparable to that of other technological or numerical strategies, but can be used in a very simple and low-cost dosimetry sensor.

[1]  M. Buehler,et al.  CRRES microelectronic test chip orbital data. II , 1992 .

[2]  R C Hughes,et al.  Miniature radiation dosimeter for in vivo radiation measurements. , 1986, International journal of radiation oncology, biology, physics.

[4]  I. Thomson,et al.  A sensitive, temperature-compensated, zero-bias floating gate MOSFET dosimeter , 2004, IEEE Transactions on Nuclear Science.

[5]  Yugo Kimoto,et al.  Total dose orbital data by dosimeter onboard Tsubasa (MDS-1) satellite , 2003 .

[6]  R. Nickson,et al.  Dose-depth and SEU monitors for the STRV-1c satellite , 1998 .

[7]  Dan Keun Sung,et al.  Analysis of anomalous TDE data on-board the KITSAT-1 , 1999 .

[8]  Alberto J. Palma,et al.  Readout techniques for linearity and resolution improvements in MOSFET dosimeters , 2010 .

[9]  N Suchowerska,et al.  Clinical application of the OneDose™ Patient Dosimetry System for total body irradiation , 2005, Physics in medicine and biology.

[10]  L. Adams,et al.  RADFET: A review of the use of metal-oxide-silicon devices as integrating dosimeters , 1986 .

[11]  P. Lambin,et al.  Clinical dosimetry with MOSFET dosimeters to determine the dose along the field junction in a split beam technique. , 2003, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[12]  T. P. Ma,et al.  Ionizing radiation effects in MOS devices and circuits , 1989 .

[13]  Martin G. Buehler,et al.  On-chip p-MOSFET dosimetry (CMOS ICs) , 1993 .

[14]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[15]  M. Buehler,et al.  CRRES microelectronic test chip , 1991 .

[16]  Alberto J. Palma,et al.  Evaluation of a low-cost commercial mosfet as radiation dosimeter , 2006 .

[17]  A. Holmes-Siedle,et al.  Feasibility study of online high-spatial-resolution MOSFET dosimetry in static and pulsed x-ray radiation fields , 2001 .

[18]  M. Butson,et al.  Effects of temperature variation on MOSFET dosimetry. , 2004, Physics in medicine and biology.

[19]  D Guirado,et al.  Monte Carlo simulation using the PENELOPE code with an ant colony algorithm to study MOSFET detectors , 2009, Physics in medicine and biology.

[20]  M. Joyce,et al.  Neutron detection at the extremes of sensitivity in the cosmic environment , 2000 .

[21]  M. Butson,et al.  Skin dosimetry with new MOSFET detectors , 2008 .

[22]  Jacob Fraden,et al.  Handbook of modern sensors , 1997 .

[23]  M. Joyce,et al.  Radiation-induced statistical uncertainty in the threshold voltage measurement of MOSFET dosimeters. , 2004, Physics in medicine and biology.

[24]  N. Sultan,et al.  Applications of MOSFET dosimeters on MIR and BION satellites , 1997 .

[25]  G. Sarrabayrouse,et al.  Assessment of a new p-MOSFET usable as a doserate insensitive gamma dose sensor , 1995 .

[26]  Kyoung-Wook Min,et al.  Model-data comparison of total dose experiment on KITSAT-1 , 2002 .

[27]  J Cygler,et al.  Evaluation of a dual bias dual metal oxide-silicon semiconductor field effect transistor detector as radiation dosimeter. , 1994, Medical physics.

[28]  A B Rosenfeld,et al.  MOSFET dosimetry on modern radiation oncology modalities. , 2002, Radiation protection dosimetry.

[29]  Giuseppe Iaccarino,et al.  In vivo dosimetry with MOSFETs: dosimetric characterization and first clinical results in intraoperative radiotherapy. , 2005, International journal of radiation oncology, biology, physics.

[30]  J. Fraden,et al.  Handbook of Modern Sensors: Physics, Designs, and Applications, 2nd ed. , 1998 .

[31]  S. Siskos,et al.  Radiation dose measurment using MOSFETs , 1998 .

[32]  W. Lane,et al.  Electrical performance and radiation sensitivity of stacked PMOS dosimeters under bulkbias control , 1998 .

[33]  J. Barak,et al.  Temperature effects and long term fading of implanted and un-implanted gate oxide RADFETs , 2003, Proceedings of the 7th European Conference on Radiation and Its Effects on Components and Systems, 2003. RADECS 2003..