A Characterization of Affine Dual Frames in L2(Rn)

Abstract We give a characterization of all (quasi)affine frames in L 2 ( R n ) which have a (quasi)affine dual in terms of the two simple equations in the Fourier transform domain. In particular, if the dual frame is the same as the original system, i.e., it is a tight frame, we obtain the well-known characterization of wavelets. Although these equations have already been proven under some special conditions we show that these characterizations are valid without any decay assumptions on the generators of the affine system.

[1]  Marcin Bownik The construction ofr-regular wavelets for arbitrary dilations , 2001 .

[2]  G. Garrigós,et al.  A characterization of wavelet families arising from biorthogonal MRA’s of multiplicityd , 2001 .

[3]  A. Calogero A characterization of wavelets on general lattices , 2000 .

[4]  Yang Wang,et al.  Arbitrarily smooth orthogonal nonseparable wavelets in R 2 , 1999 .

[5]  Paolo M. Soardi,et al.  Single wavelets in n-dimensions , 1998 .

[6]  Charles K. Chui,et al.  Affine frames, quasi-affine frames, and their duals , 1998, Adv. Comput. Math..

[7]  C. LagariasAT Corrigendum and Addendum to: Haar Bases for L2(Rn) and Algebraic Number Theory , 1998 .

[8]  A. Ron,et al.  Tight compactly supported wavelet frames of arbitrarily high smoothness , 1998 .

[9]  B. Han On Dual Wavelet Tight Frames , 1997 .

[10]  A. Ron,et al.  Affine systems inL2 (ℝd) II: Dual systems , 1997 .

[11]  Marcin Bownik,et al.  Tight frames of multidimensional wavelets , 1997 .

[12]  A. Ron,et al.  Affine Systems inL2(Rd): The Analysis of the Analysis Operator , 1997 .

[13]  David R. Larson,et al.  Wavelet sets in ℝn , 1997 .

[14]  P. Wojtaszczyk,et al.  A Mathematical Introduction to Wavelets: Wavelets and smoothness of functions , 1997 .

[15]  G. Weiss,et al.  A characterization of functions that generate wavelet and related expansion , 1997 .

[16]  Jeffrey C. Lagarias,et al.  Haar Bases forL2(Rn) and Algebraic Number Theory , 1996 .

[17]  Jeffrey C. Lagarias,et al.  Haar Bases for L 2 (R n ) and Algebraic Number Theory , 1996 .

[18]  Gustaf Gripenberg,et al.  A necessary and sufficient condition for the existence of a father wavelet , 1995 .

[19]  Zuowei Shen Affine systems in L 2 ( IR d ) : the analysis of the analysis operator , 1995 .

[20]  B. Han On Dual Wavelet Tight Frames , 1995 .

[21]  Robert S. Strichartz,et al.  Wavelets and self-affine tilings , 1993 .

[22]  G. Weiss,et al.  Littlewood-Paley Theory and the Study of Function Spaces , 1991 .

[23]  B. Jawerth,et al.  The φ-transform and applications to distribution spaces , 1988 .