CHARACTERISTICS OF A YIELD STRESS SCALING FUNCTION FOR ELECTRORHEOLOGICAL FLUIDS

The electrorheological (ER) fluids exhibit a drastic change in rheological and electrical properties. Among these properties, yield stress is one of the critical evaluation parameters of the performance of ER devices. The published experimental data of yield dependence on the electric field strength and particle volume fraction are inconsistent due to the time dependence of material properties and measuring conditions. In this paper, we present a universal function, descriptive of the normalized yield stress, via scaling of the applied electric field strength. This scaling equation hybridizes both the polarization and conductivity models. Yield stress data for various ER fluids are collapsed onto a single curve for a broad range of electric field strengths, suggesting that the proposed scaling equation is adequate for predicting the ER property. Furthermore, the yield stresses, obtained from two different measuring techniques (static and dynamics methods), were also examined.

[1]  M. Jhon,et al.  Synthesis and electrorheological characteristics of microencapsulated polyaniline particles with melamine-formaldehyde resins , 2001 .

[2]  H. Choi,et al.  A yield stress scaling function for electrorheological fluids , 2001 .

[3]  P. Atten,et al.  a Conduction Model Describing Particle-Particle Interaction in the Case of Surface Conducting Particles , 2001 .

[4]  Georges Bossis,et al.  ELECTROACTIVE AND ELECTROSTRUCTURED ELASTOMERS , 2001 .

[5]  Y. Shiroyanagi,et al.  ELECTRORHEOLOGICAL FLUIDS UNDER SHEAR , 2001 .

[6]  F. Filisko,et al.  PARAMETERS AFFECTING LAMELLAR FORMATIONS IN ER FLUIDS: AN ALTERNATIVE MODEL FOR ER ACTIVITY , 2001 .

[7]  R. J. Atkin,et al.  TWO DIMENSIONAL FLOW OF AN ESF: EXPERIMENT, CFD, BINGHAM PLASTIC ANALYSIS , 2001 .

[8]  M. Jhon,et al.  EFFECT OF IONIC AND NONIONIC SUBSTITUENTS ON THE ELECTRORHEOLOGICAL CHARACTERISTICS OF POLYANILINE DERIVATIVES , 2001 .

[9]  J. Joo,et al.  Synthesis and electrorheology of emulsion intercalated PANI-clay nanocomposite , 2001 .

[10]  H. Choi,et al.  Preparation and electrorheological characteristics of poly(p-phenylene)-based suspensions , 2001 .

[11]  H. Choi,et al.  Preparation and Characterization of Phosphate Cellulose‐Based Electrorheological Fluids , 2001 .

[12]  P. Sheng,et al.  Frequency-induced structure variation in electrorheological fluids , 2000 .

[13]  M. Jhon,et al.  Aqueous ferric chloride doped poly(p-phenylene) for electrorheological material , 2000 .

[14]  M. Jhon,et al.  Microencapsulated polyaniline particles for electrorheological materials , 2000 .

[15]  H. Choi,et al.  Synthesis and electrorheological properties of polyaniline‐Na+‐montmorillonite suspensions , 1999 .

[16]  Chengwei Wu,et al.  Conductivity in Electrorheology , 1999 .

[17]  H. Choi,et al.  Electrorheological characterization of semiconducting polyaniline suspension , 1999 .

[18]  H. Choi,et al.  Electrorheological and dielectric characteristics of semiconductive polyaniline-silicone oil suspensions , 1998 .

[19]  P. Sheng,et al.  Magnetic materials-based electrorheological fluids , 1997 .

[20]  Myung S. Jhon,et al.  Electrorheological characterization of polyaniline dispersions , 1997 .

[21]  Weijia Wen,et al.  New Electrorheological Fluid: Theory and Experiment , 1997 .

[22]  L. C. Davis Time-dependent and nonlinear effects in electrorheological fluids , 1997 .

[23]  Daniel J. Klingenberg,et al.  Electrorheology : mechanisms and models , 1996 .

[24]  Tasuku Saito,et al.  Layered model of electrorheological fluid under flow , 1996 .

[25]  Martin,et al.  Rheology of electrorheological fluids. , 1992, Physical review letters.