Bayesian strategies for uncertainty quantification of the thermodynamic properties of materials

Reliable models of the thermodynamic properties of materials are critical for industrially relevant applications that require a good understanding of equilibrium phase diagrams, thermal and chemical transport, and microstructure evolution. The goal of thermodynamic models is to capture data from both experimental and computational studies and then make reliable predictions when extrapolating to new regions of parameter space. These predictions will be impacted by artifacts present in real data sets such as outliers, systematics errors and unreliable or missing uncertainty bounds. Such issues increase the probability of the thermodynamic model producing erroneous predictions. We present a Bayesian framework for the selection, calibration and quantification of uncertainty of thermodynamic property models. The modular framework addresses numerous concerns regarding thermodynamic models including thermodynamic consistency, robustness to outliers and systematic errors by the use of hyperparameter weightings and robust Likelihood and Prior distribution choices. Furthermore, the framework's inherent transparency (e.g. our choice of probability functions and associated parameters) enables insights into the complex process of thermodynamic assessment. We introduce these concepts through examples where the true property model is known. In addition, we demonstrate the utility of the framework through the creation of a property model from a large set of experimental specific heat and enthalpy measurements of Hafnium metal from 0 to 4900K.

[1]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[2]  Anjana Talapatra,et al.  Revisiting thermodynamics and kinetic diffusivities of uranium-niobium with Bayesian uncertainty analysis , 2016 .

[3]  F. Simon,et al.  Die spezifischen Wärmen von Beryllium, Germanium und Hafnium bei tiefen Temperaturen , 1934 .

[4]  A. Merloni,et al.  X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue , 2014, 1402.0004.

[5]  H. Dette,et al.  Modeling of Gibbs energies of pure elements down to 0 K using segmented regression , 2016 .

[6]  Dmitri V. Malakhov,et al.  Confidence intervals of calculated phase boundaries , 1997 .

[7]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[8]  S. Samavedam,et al.  Hafnium zirconate gate dielectric for advanced gate stack applications , 2007 .

[9]  Erich Königsberger,et al.  Improvement of excess parameters from thermodynamic and phase diagram data by a sequential Bayes algorithm , 1991 .

[10]  N. M. Wolcott,et al.  The atomic heats of titanium, zirconium and hafnium , 1957 .

[11]  L. P. Filippov,et al.  THERMAL, ELECTRICAL, AND EMISSIVE PROPERTIES OF HAFNIUM IN THE HIGH- TEMPERATURE REGION. , 1972 .

[12]  J. Graham-Pole,et al.  Physical , 1998, The Lancet.

[13]  G. Grimvall Thermophysical properties of materials , 1986 .

[14]  Ursula R. Kattner,et al.  The thermodynamic modeling of multicomponent phase equilibria , 1997 .

[15]  Zi-Kui Liu,et al.  High-Throughput Thermodynamic Modeling and Uncertainty Quantification for ICME , 2017 .

[16]  S. Yoda,et al.  Non-Contact Measurements of the Thermophysical Properties of Hafnium-3 Mass% Zirconium at High Temperature , 2003 .

[17]  M. P. Hobson,et al.  Importance Nested Sampling and the MultiNest Algorithm , 2013, The Open Journal of Astrophysics.

[18]  David M. Blei,et al.  Variational Inference: A Review for Statisticians , 2016, ArXiv.

[19]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[20]  Jianting Guo,et al.  Effect of hafnium on creep behavior of a corrosion resistant nickel base superalloy , 2010 .

[21]  D. T. Hawkins,et al.  HIGH-TEMPERATURE HEAT CONTENT OF HAFNIUM , 1963 .

[22]  L. Verde Statistical Methods in Cosmology , 2009, 0911.3105.

[23]  N. Chatterjee,et al.  Bayes estimation: A novel approach to derivation of internally consistent thermodynamic data for minerals, their uncertainties, and correlations. Part II: Application , 1994 .

[24]  G. Kneip,et al.  LOW-TEMPERATURE SPECIFIC HEATS OF TITANIUM, ZIRCONIUM, AND HAFNIUM , 1963 .

[25]  Douglas Allaire,et al.  Bayesian uncertainty quantification and information fusion in CALPHAD-based thermodynamic modeling , 2018, Acta Materialia.

[26]  T. A. McClaine THERMODYNAMIC AND KINETIC STUDIES FOR A REFRACTORY MATERIALS PROGRAM , 1964 .

[27]  J. Lang,et al.  Measurement of Thermal Properties , 1961 .

[28]  N. Chatterjee,et al.  Bayes estimation: A novel approach to derivation of internally consistent thermodynamic data for minerals, their uncertainties, and correlations. Part I: Theory , 1994 .

[29]  A. N. Lasenby,et al.  Bayesian ‘hyper-parameters’ approach to joint estimation: the Hubble constant from CMB measurements , 1999 .

[30]  Yin-Zhe Ma,et al.  How to combine correlated data sets - A Bayesian hyperparameter matrix method , 2013, Astron. Comput..

[31]  I. Estermann,et al.  The Low Temperature Specific Heats of Titanium, Zirconium, and Hafnium1 , 1958 .

[32]  N. Chatterjee,et al.  The Bayesian approach to an internally consistent thermodynamic database: theory, database, and generation of phase diagrams , 1998 .

[33]  J. Arblaster Thermodynamic properties of zirconium , 2013 .

[34]  J. McClure,et al.  Simultaneous Measurements of Specific Heat, Electrical Resistivity, and Hemispherical Total Emittance by a Pulse Heating Technique: Hafnium-3 (Wt. %) Zirconium, 1500 to 2400 K. , 1975, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[35]  J. Arblaster Thermodynamic Properties of Hafnium , 2014 .

[36]  L. P. Filippov,et al.  High-temperature investigations of the thermal properties of solids , 1971 .

[37]  M. Stan,et al.  A Bayesian approach to evaluating the uncertainty of thermodynamic data and phase diagrams , 2003 .

[38]  D. A. Hollein,et al.  Development of hafnium and comparison with other pressurized water reactor control rod materials , 1982 .

[39]  A. Dinsdale SGTE data for pure elements , 1991 .

[40]  J. C. Ho,et al.  MAGNETIC-SUSCEPTIBILITY AND LOW-TEMPERATURE SPECIFIC-HEAT STUDIES OF Ti, Zr, AND Hf. , 1971 .

[41]  Wei Sun,et al.  Structural evolution and ablation mechanism of a hafnium carbide coating on a C/C composite in an oxyacetylene torch environment , 2012 .

[42]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[43]  Jonathan R Goodman,et al.  Ensemble samplers with affine invariance , 2010 .

[44]  N. Milošević,et al.  Thermophysical Properties of Solid Phase Hafnium at High Temperatures , 2006 .