Bayesian strategies for uncertainty quantification of the thermodynamic properties of materials
暂无分享,去创建一个
[1] S. Chib,et al. Understanding the Metropolis-Hastings Algorithm , 1995 .
[2] Anjana Talapatra,et al. Revisiting thermodynamics and kinetic diffusivities of uranium-niobium with Bayesian uncertainty analysis , 2016 .
[3] F. Simon,et al. Die spezifischen Wärmen von Beryllium, Germanium und Hafnium bei tiefen Temperaturen , 1934 .
[4] A. Merloni,et al. X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue , 2014, 1402.0004.
[5] H. Dette,et al. Modeling of Gibbs energies of pure elements down to 0 K using segmented regression , 2016 .
[6] Dmitri V. Malakhov,et al. Confidence intervals of calculated phase boundaries , 1997 .
[7] C. D. Kemp,et al. Density Estimation for Statistics and Data Analysis , 1987 .
[8] S. Samavedam,et al. Hafnium zirconate gate dielectric for advanced gate stack applications , 2007 .
[9] Erich Königsberger,et al. Improvement of excess parameters from thermodynamic and phase diagram data by a sequential Bayes algorithm , 1991 .
[10] N. M. Wolcott,et al. The atomic heats of titanium, zirconium and hafnium , 1957 .
[11] L. P. Filippov,et al. THERMAL, ELECTRICAL, AND EMISSIVE PROPERTIES OF HAFNIUM IN THE HIGH- TEMPERATURE REGION. , 1972 .
[12] J. Graham-Pole,et al. Physical , 1998, The Lancet.
[13] G. Grimvall. Thermophysical properties of materials , 1986 .
[14] Ursula R. Kattner,et al. The thermodynamic modeling of multicomponent phase equilibria , 1997 .
[15] Zi-Kui Liu,et al. High-Throughput Thermodynamic Modeling and Uncertainty Quantification for ICME , 2017 .
[16] S. Yoda,et al. Non-Contact Measurements of the Thermophysical Properties of Hafnium-3 Mass% Zirconium at High Temperature , 2003 .
[17] M. P. Hobson,et al. Importance Nested Sampling and the MultiNest Algorithm , 2013, The Open Journal of Astrophysics.
[18] David M. Blei,et al. Variational Inference: A Review for Statisticians , 2016, ArXiv.
[19] David B. Dunson,et al. Bayesian Data Analysis , 2010 .
[20] Jianting Guo,et al. Effect of hafnium on creep behavior of a corrosion resistant nickel base superalloy , 2010 .
[21] D. T. Hawkins,et al. HIGH-TEMPERATURE HEAT CONTENT OF HAFNIUM , 1963 .
[22] L. Verde. Statistical Methods in Cosmology , 2009, 0911.3105.
[23] N. Chatterjee,et al. Bayes estimation: A novel approach to derivation of internally consistent thermodynamic data for minerals, their uncertainties, and correlations. Part II: Application , 1994 .
[24] G. Kneip,et al. LOW-TEMPERATURE SPECIFIC HEATS OF TITANIUM, ZIRCONIUM, AND HAFNIUM , 1963 .
[25] Douglas Allaire,et al. Bayesian uncertainty quantification and information fusion in CALPHAD-based thermodynamic modeling , 2018, Acta Materialia.
[26] T. A. McClaine. THERMODYNAMIC AND KINETIC STUDIES FOR A REFRACTORY MATERIALS PROGRAM , 1964 .
[27] J. Lang,et al. Measurement of Thermal Properties , 1961 .
[28] N. Chatterjee,et al. Bayes estimation: A novel approach to derivation of internally consistent thermodynamic data for minerals, their uncertainties, and correlations. Part I: Theory , 1994 .
[29] A. N. Lasenby,et al. Bayesian ‘hyper-parameters’ approach to joint estimation: the Hubble constant from CMB measurements , 1999 .
[30] Yin-Zhe Ma,et al. How to combine correlated data sets - A Bayesian hyperparameter matrix method , 2013, Astron. Comput..
[31] I. Estermann,et al. The Low Temperature Specific Heats of Titanium, Zirconium, and Hafnium1 , 1958 .
[32] N. Chatterjee,et al. The Bayesian approach to an internally consistent thermodynamic database: theory, database, and generation of phase diagrams , 1998 .
[33] J. Arblaster. Thermodynamic properties of zirconium , 2013 .
[34] J. McClure,et al. Simultaneous Measurements of Specific Heat, Electrical Resistivity, and Hemispherical Total Emittance by a Pulse Heating Technique: Hafnium-3 (Wt. %) Zirconium, 1500 to 2400 K. , 1975, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.
[35] J. Arblaster. Thermodynamic Properties of Hafnium , 2014 .
[36] L. P. Filippov,et al. High-temperature investigations of the thermal properties of solids , 1971 .
[37] M. Stan,et al. A Bayesian approach to evaluating the uncertainty of thermodynamic data and phase diagrams , 2003 .
[38] D. A. Hollein,et al. Development of hafnium and comparison with other pressurized water reactor control rod materials , 1982 .
[39] A. Dinsdale. SGTE data for pure elements , 1991 .
[40] J. C. Ho,et al. MAGNETIC-SUSCEPTIBILITY AND LOW-TEMPERATURE SPECIFIC-HEAT STUDIES OF Ti, Zr, AND Hf. , 1971 .
[41] Wei Sun,et al. Structural evolution and ablation mechanism of a hafnium carbide coating on a C/C composite in an oxyacetylene torch environment , 2012 .
[42] Daniel Foreman-Mackey,et al. emcee: The MCMC Hammer , 2012, 1202.3665.
[43] Jonathan R Goodman,et al. Ensemble samplers with affine invariance , 2010 .
[44] N. Milošević,et al. Thermophysical Properties of Solid Phase Hafnium at High Temperatures , 2006 .