The algebraic structure of DD systems : a behavioral perspective
暂无分享,去创建一个
[1] R. Tennant. Algebra , 1941, Nature.
[2] Olaf Helmer,et al. The elementary divisor theorem for certain rings without chain condition , 1943 .
[3] L. Schwartz. Theorie Generale des Fonctions Moyenne-Periodiques , 1947 .
[4] Irving Kaplansky,et al. Elementary divisors and modules , 1949 .
[5] Ivan Niven. Irrational Numbers: THE GENERALIZED LINDEMANN THEOREM , 1956 .
[6] L. Ehrenpreis,et al. Solutions of Some Problems of Division: Part III. Division in the Spaces, D , H, Q A , O , 1956 .
[7] B. Malgrange. Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution , 1956 .
[8] L. Ehrenpreis,et al. SOLUTIONS OF SOME PROBLEMS OF DIVISION.* Part V. Hyperbolic Operators. , 1962 .
[9] A. Zemanian,et al. Distribution theory and transform analysis , 1966 .
[10] F. Trèves. Topological vector spaces, distributions and kernels , 1967 .
[11] P. Cohn. Free rings and their relations , 1973 .
[12] Carlos A. Berenstein,et al. The Ritt theorem in several variables , 1974 .
[13] N. Jacobson,et al. Basic Algebra I , 1976 .
[14] Ahmad Diab. Quotient et zéros communs de deux polynômes exponentiels. , 1975 .
[15] G. Meisters. Periodic distributions and non-Liouville numbers , 1977 .
[16] H. Brezis. Analyse fonctionnelle : théorie et applications , 1983 .
[17] E. Kamen,et al. Proper stable Bezout factorizations and feedback control of linear time-delay systems† , 1986 .
[18] C. Berenstein,et al. Ideals generated by exponential-polynomials , 1986 .
[19] N. Bourbaki,et al. Topological Vector Spaces: Chapters 1–5 , 1987 .
[20] Luciano Pandolfi,et al. Null controllability of a class of functional differential systems , 1988 .
[21] François Parreau,et al. Schwartz's theorem on mean periodic vector-valued functions , 1989 .
[22] Ulrich Oberst,et al. Multidimensional constant linear systems , 1990, EUROCAST.
[23] G. Folland. Fourier analysis and its applications , 1992 .
[24] C. Berenstein,et al. Complex Analysis and Convolution Equations , 1993 .
[25] Heinz Kredel,et al. Gröbner Bases: A Computational Approach to Commutative Algebra , 1993 .
[26] J. Willems. On interconnections, control, and feedback , 1997, IEEE Trans. Autom. Control..
[27] Xi Ciclo. Delay{Dierential Systems in the Behavioral Approach , 1998 .
[28] Hugues Mounier,et al. Algebraic interpretations of the spectral controllability of a linear delay system , 1998 .
[29] O. Lezama,et al. On the Simultaneous Basis Property in Prüfer Domains , 1998 .
[30] Arjeh M. Cohen,et al. Some tapas of computer algebra , 1999, Algorithms and computation in mathematics.
[31] Luc C. G. J. M. Habets,et al. System Equivalence for AR-Systems over Rings—with an Application to Delay-Differential Systems , 1997, 1997 European Control Conference (ECC).
[32] Sandro Zampieri,et al. Controllability of Systems Described by Convolutional or Delay-Differential Equations , 2000, SIAM J. Control. Optim..
[33] Heide Gluesing-Luerssen,et al. A Convolution Algebra of Delay-Differential Operators and a Related Problem of Finite Spectrum Assignability , 2000, Math. Control. Signals Syst..
[34] L. Habets,et al. Behavioral controllability of time-delay systems with incommensurable delays , 2000 .
[35] Paula Rocha,et al. Trajectory Control and Interconnection of 1D and nD Systems , 2001, SIAM J. Control. Optim..
[36] Heide Gluesing-Luerssen,et al. Linear Delay-Differential Systems with Commensurate Delays: An Algebraic Approach , 2001 .
[37] Sandro Zampieri,et al. Some results on systems described by convolutional equations , 2001, IEEE Trans. Autom. Control..
[38] Jeffrey S. Rosenthal,et al. Introduction to mathematical systems theory. a behavioral approach [Book Review] , 2002, IEEE Transactions on Automatic Control.