The Incorporation of Model Uncertainty in Geostatistical Simulation

A growing area of application for geostatistical conditional simulation is as a tool for risk analysis in mineral resource and environmental projects. In these applications accurate field measurement of a variable at a specific location is difficult and measurement of variables at all locations is impossible. Conditional simulation provides a means of generating stochastic realizations of spatial (essentially geological and/or geotechnical) variables at unsampled locations thereby quantifying the uncertainty associated with limited sampling and providing stochastic models for 'downstream' applications such as risk assessment. However, because the number of experimental data in practical applications is limited, the estimated geostatistical parameters used in the simulation are themselves uncertain. The inference of these parameters by maximum likelihood provides a means of assessing this estimation uncertainty which, in turn, can be included in the conditional simulation procedure. A case study based on t...

[1]  Carol A. Gotway,et al.  The use of conditional simulation in nuclear-waste-site performance assessment , 1994 .

[2]  A case study of model selection and parameter inference by maximum likelihood with application to uncertainty analysis , 1998 .

[3]  A. V. Vecchia Estimation and model identification for continuous spatial processes , 1988 .

[4]  Andre G. Journel,et al.  New method for reservoir mapping , 1990 .

[5]  Andre G. Journel,et al.  Conditional Indicator Simulation: Application to a Saskatchewan uranium deposit , 1984 .

[6]  K. Mardia,et al.  Maximum likelihood estimation of models for residual covariance in spatial regression , 1984 .

[7]  J. N. K. Rao,et al.  Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems: Comment , 1977 .

[8]  G. Matheron The intrinsic random functions and their applications , 1973, Advances in Applied Probability.

[9]  M. Kendall,et al.  The advanced theory of statistics , 1945 .

[10]  Eulogio Pardo-Igúzquiza,et al.  Maximum Likelihood Inference Of Spatial Covariance Parameters Of Soil Properties , 1998 .

[11]  R. H. Norden A Survey of Maximum Likelihood Estimation , 1972 .

[12]  Peter K. Kitanidis,et al.  Statistical estimation of polynomial generalized covariance functions and hydrologic applications , 1983 .

[13]  Eulogio Pardo-Igúzquiza,et al.  MLREML: a computer program for the inference of spatial covariance parameters by maximum likelihood and restricted maximum liklihood , 1997 .

[14]  Peter K. Kitanidis,et al.  Analysis of the Spatial Structure of Properties of Selected Aquifers , 1985 .

[15]  Peter A. Dowd,et al.  A review of recent developments in geostatistics , 1991 .

[16]  M. R. Osborne,et al.  Estimation of covariance parameters in kriging via restricted maximum likelihood , 1991 .

[17]  S. R. Searle Linear Models , 1971 .

[18]  Brian D. Ripley,et al.  Problems with likelihood estimation of covariance functions of spatial Gaussian processes , 1987 .

[19]  Dale L. Zimmerman,et al.  Computationally efficient restricted maximum likelihood estimation of generalized covariance functions , 1989 .

[20]  Norman R. Draper,et al.  Applied regression analysis (2. ed.) , 1981, Wiley series in probability and mathematical statistics.

[21]  Kanti V. Mardia,et al.  On multimodality of the likelihood in the spatial linear model , 1989 .

[22]  D. Harville Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems , 1977 .

[23]  Eulogio Pardo-Igúzquiza,et al.  Maximum Likelihood Estimation of Spatial Covariance Parameters , 1998 .

[24]  B. Ripley Statistical inference for spatial processes , 1990 .

[25]  F. Alabert,et al.  Non-Gaussian data expansion in the Earth Sciences , 1989 .

[26]  P. Kitanidis,et al.  Maximum likelihood parameter estimation of hydrologic spatial processes by the Gauss-Newton method , 1985 .

[27]  Eulogio Pardo-Igúzquiza,et al.  AMLE3D: a computer program for the inference of spatial covariance parameters by approximate maximum likelihood estimation , 1997 .

[28]  Peter A. Dowd,et al.  Planning from Estimates: Sensitivity of Mine Production Schedules to Estimation Methods , 1976 .

[29]  Franklin A. Graybill,et al.  Theory and Application of the Linear Model , 1976 .

[30]  P. A. Dowd,et al.  The Second-Order Stationary Universal Kriging Model Revisited , 1998 .

[31]  H. D. Patterson,et al.  Recovery of inter-block information when block sizes are unequal , 1971 .