Experimental study of firing death in a network of chaotic FitzHugh-Nagumo neurons.

The FitzHugh-Nagumo neurons driven by a periodic forcing undergo a period-doubling route to chaos and a transition to mixed-mode oscillations. When coupled, their dynamics tend to be synchronized. We show that the chaotically spiking neurons change their internal dynamics to subthreshold oscillations, the phenomenon referred to as firing death. These dynamical changes are observed below the critical coupling strength at which the transition to full chaotic synchronization occurs. Moreover, we find various dynamical regimes in the subthreshold oscillations, namely, regular, quasiperiodic, and chaotic states. We show numerically that these dynamical states may coexist with large-amplitude spiking regimes and that this coexistence is characterized by riddled basins of attraction. The reported results are obtained for neurons implemented in the electronic circuits as well as for the model equations. Finally, we comment on the possible scenarios where the coupling-induced firing death could play an important role in biological systems.