Coupled ion and network dynamics in polymer electrolytes: Monte Carlo study of a lattice model.

Monte Carlo simulations are used to study ion and polymer chain dynamic properties in a simplified lattice model with only one species of mobile ions. The ions interact attractively with specific beads in the host chains, while polymer beads repel each other. Cross linking of chains by the ions reduces chain mobilities which in turn suppresses ionic diffusion. Diffusion constants for ions and chains as a function of temperature follow the Vogel-Tammann-Fulcher (VTF) law with a common VTF temperature at low ion concentration, but both decouple at higher concentrations, in agreement with experimental observations. Our model allows us to introduce pressure as an independent variable through calculations of the equation of state using the quasichemical approximation, and to detect an exponential pressure dependence of the ionic diffusion.

[1]  E. M. Lifshitz,et al.  Course in Theoretical Physics , 2013 .

[2]  J. Dygas,et al.  Effects of inhomogeneity on ionic conductivity and relaxations in PEO and PEO–salt complexes , 2003 .

[3]  A. Nitzan,et al.  Diffusion in polymer electrolytes and the dynamic percolation model , 2002 .

[4]  D. Macfarlane,et al.  The effect of nano-particle TiO2 fillers on structure and transport in polymer electrolytes , 2002 .

[5]  S. W. Leeuw,et al.  Molecular dynamics study of the influence of the polarizability in PEOx–NaI polymer electrolyte systems , 2002 .

[6]  A. Nitzan,et al.  Effective Medium Theory of Conduction in Stretched Polymer Electrolytes , 2002, cond-mat/0202165.

[7]  A. Nitzan,et al.  Dynamic percolation theory for particle diffusion in a polymer network , 2001, cond-mat/0110113.

[8]  V. Noto,et al.  Mechanism of Ionic Conductivity in Poly(ethyleneglycol 400)/(LiCl)x Electrolytic Complexes: Studies Based on Electrical Spectroscopy , 2001 .

[9]  S. W. Leeuw,et al.  A Rouse model for polymer electrolytes , 2001 .

[10]  Paul F. McMillan,et al.  Relaxation in glassforming liquids and amorphous solids , 2000 .

[11]  S. W. Leeuw,et al.  The dynamics in polyethyleneoxide-alkali iodide complexes investigated by neutron spin-echo spectroscopy and molecular dynamics simulations , 2000 .

[12]  B. Sandner,et al.  Gel electrolytes on the basis of oligo(ethylene glycol)n dimethacrylates-thermal, mechanical and electrochemical properties in relationship to the network structure , 2000 .

[13]  E. Peled,et al.  Stretching-induced conductivity enhancement of LiI(PEO)-polymer electrolyte , 2000 .

[14]  A. Bunde,et al.  Percolation concepts in solid state ionics , 1999 .

[15]  B. Scrosati,et al.  Nanocomposite polymer electrolytes for lithium batteries , 1998, Nature.

[16]  I. Ward,et al.  A comparison of ionic conductivitybehaviour in various ethylene oxidebased polymer electrolytes , 1998 .

[17]  Alexander Kisliuk,et al.  FRACTIONAL STOKES-EINSTEIN LAW FOR IONIC TRANSPORT IN LIQUIDS , 1998 .

[18]  A. Nitzan,et al.  Constant pressure simulations of lattice gas models , 1997 .

[19]  A. Nitzan,et al.  Lattice theory of solvation in macromolecular fluids. III. Monte Carlo simulations , 1995 .

[20]  W. V. Gunsteren,et al.  Computer simulation of a polymer electrolyte: Lithium iodide in amorphous poly(ethylene oxide) , 1995 .

[21]  A. D. Mackie,et al.  Monte Carlo simulations of phase equilibria for a lattice homopolymer model , 1995 .

[22]  Michel Perrier,et al.  Phase Diagrams and Conductivity Behavior of Poly(ethylene oxide)-Molten Salt Rubbery Electrolytes , 1994 .

[23]  A. Nitzan,et al.  Lattice theory of solvation and dissociation in macromolecular fluids. II. Quasichemical approximation , 1994 .

[24]  Berend Smit,et al.  Novel scheme to study structural and thermal properties of continuously deformable molecules , 1992 .

[25]  H. Wittmann On the validity of the Gibbs–diMarzio theory of the glass transition of lattice polymers , 1991 .

[26]  E. DiMarzio,et al.  On the Second-Order Transition of a Rubber. , 1964, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[27]  A. W. Rosenbluth,et al.  MONTE CARLO CALCULATION OF THE AVERAGE EXTENSION OF MOLECULAR CHAINS , 1955 .

[28]  J. Barker Cooperative Orientation Effects in Solutions , 1952 .

[29]  G. Tammann,et al.  Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten , 1926 .

[30]  G. Fulcher,et al.  ANALYSIS OF RECENT MEASUREMENTS OF THE VISCOSITY OF GLASSES , 1925 .

[31]  K. Binder Monte Carlo and molecular dynamics simulations in polymer science , 1995 .

[32]  A. Nitzan,et al.  Lattice theory of solvation and dissociation in macromolecular fluids. I. Mean field approximation , 1994 .

[33]  Daan Frenkel,et al.  Configurational bias Monte Carlo: a new sampling scheme for flexible chains , 1992 .

[34]  C. Vincent,et al.  Polymer electrolyte reviews. 1 , 1987 .

[35]  Walter H. Stockmayer,et al.  Monte Carlo Calculations on the Dynamics of Polymers in Dilute Solution , 1962 .

[36]  H. Vogel,et al.  Das Temperaturabhangigkeitsgesetz der Viskositat von Flussigkeiten , 1921 .