THE SCHOUTEN-NIJENHUIS BRACKET, COHOMOLOGY AND GENERALIZED POISSON STRUCTURES

Newly introduced generalized Poisson structures based on suitable skew-symmetric contravariant tensors of even order are discussed in terms of the Schouten - Nijenhuis bracket. The associated `Jacobi identities' are expressed as conditions on these tensors, the cohomological contents of which is given. In particular, we determine the linear generalized Poisson structures which can be constructed on the dual spaces of simple Lie algebras.

[1]  L. Takhtajan Nambu mechanics , based on the deformation theory , path integral formulation and on , 1993, hep-th/9301111.

[2]  J. A. Azcárraga,et al.  Higher order simple Lie algebras , 1996, hep-th/9605213.

[3]  J. M. Izquierdo,et al.  The Z2-graded Schouten–Nijenhuis bracket and generalized super-Poisson structures , 1996, hep-th/9612186.

[4]  Philippe Gautheron Some remarks concerning Nambu mechanics , 1996 .

[5]  M. Flato,et al.  Deformation quantization and Nambu Mechanics , 1996, hep-th/9602016.

[6]  J. A. Azcárraga,et al.  New generalized Poisson structures , 1996, q-alg/9601007.

[7]  R. Chatterjee,et al.  Aspects of classical and quantum Nambu mechanics , 1995, hep-th/9507125.

[8]  P. Guha,et al.  On decomposability of Nambu-Poisson tensor. , 1996 .

[9]  J. M. Izquierdo,et al.  Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics: A first look at cohomology of groups and related topics , 1995 .

[10]  R. Chatterjee Dynamical symmetries and Nambu mechanics , 1995, hep-th/9501141.

[11]  A. Perelomov,et al.  On the geometry of Lie algebras and Poisson tensors , 1994 .

[12]  M. C. Valsakumar,et al.  NONEXISTENCE OF QUANTUM NAMBU MECHANICS , 1994 .

[13]  J. Grabowski,et al.  POISSON STRUCTURES: TOWARDS A CLASSIFICATION , 1993 .

[14]  J. Stasheff,et al.  Introduction to SH Lie algebras for physicists , 1992, hep-th/9209099.

[15]  B. Zwiebach Closed string field theory: Quantum action and the Batalin-Vilkovisky master equation , 1992, hep-th/9206084.

[16]  E. Witten,et al.  Algebraic structures and differential geometry in 2-D string theory , 1992, hep-th/9201056.

[17]  J. Koszul Crochet de Schouten-Nijenhuis et cohomologie , 1985 .

[18]  A. Lichnerowicz Deformation theory and quantization , 1979 .

[19]  F. Bayen,et al.  Deformation theory and quantization. I. Deformations of symplectic structures , 1978 .

[20]  F. Bayen,et al.  Deformation theory and quantization. II. Physical applications , 1978 .

[21]  M. Hirayama Realization of Nambu mechanics: A particle interacting with an SU(2) monopole , 1977 .

[22]  A. Lichnerowicz,et al.  Les variétés de Poisson et leurs algèbres de Lie associées , 1977 .

[23]  A. Kirillov LOCAL LIE ALGEBRAS , 1976 .

[24]  E. Sudarshan,et al.  Relation between Nambu and Hamiltonian mechanics , 1976 .

[25]  Yuval Ne'eman,et al.  Graded Lie algebras in mathematics and physics (Bose-Fermi symmetry) , 1975 .

[26]  F. Bayen,et al.  Remarks concerning Nambu's generalized mechanics , 1975 .

[27]  Paul Adrien Maurice Dirac,et al.  Generalized Hamiltonian dynamics , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[28]  A. Nijenhuis Jacobi-type identities for bilinear differential concomitants of certain tensor fields. II , 1955 .

[29]  Samuel Eilenberg,et al.  Cohomology Theory of Lie Groups and Lie Algebras , 1948 .

[30]  S. Lie Begründung einer Invarianten-Theorie der Berührungs-Transformationen , 1874 .