QuantumNAS: Noise-Adaptive Search for Robust Quantum Circuits

Quantum noise is the key challenge in Noisy Intermediate-Scale Quantum (NISQ) computers. Previous work for mitigating noise has primarily focused on gate-level or pulse-level noise-adaptive compilation. However, limited research efforts have explored a higher level of optimization by making the quantum circuits themselves resilient to noise. In this paper, we propose QuantumNAS, a comprehensive framework for noise-adaptive co-search of the variational circuit and qubit mapping. Variational quantum circuits are a promising approach for constructing quantum neural networks for machine learning and variational ansatzes for quantum simulation. However, finding the best variational circuit and its optimal parameters is challenging due to the large design space and parameter training cost. We propose to decouple the circuit search and parameter training by introducing a novel SuperCircuit. The SuperCircuit is constructed with multiple layers of pre-defined parameterized gates (e.g., U3 and CU3) and trained by iteratively sampling and updating the parameter subsets (SubCircuits) of it. It provides an accurate estimation of SubCircuits performance trained from scratch. Then we perform an evolutionary co-search of SubCircuit and its qubit mapping. The SubCircuit performance is estimated with parameters inherited from SuperCircuit and simulated with real device noise models. Finally, we perform iterative gate pruning and finetuning to remove redundant gates in a fine-grained manner. Extensively evaluated with 12 quantum machine learning (QML) and variational quantum eigensolver (VQE) benchmarks on 10 quantum computers, QuantumNAS significantly outperforms noise-unaware search, human, random, and existing noiseadaptive qubit mapping baselines. For QML tasks, QuantumNAS is the first to demonstrate over 95% 2-class, 85% 4-class, and 32% 10-class classification accuracy on real quantum computers. It also achieves the lowest eigenvalue for VQE tasks on H2, H2O, LiH, CH4, BeH2 compared with UCCSD baselines. We also open-source QuantumEngine for fast training of parameterized quantum circuits to facilitate future research.

[1]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[2]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[3]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[4]  E. Knill,et al.  DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.

[5]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[6]  L. Landau,et al.  Fermionic quantum computation , 2000 .

[7]  Alfred V. Aho,et al.  Compilers: Principles, Techniques, and Tools (2nd Edition) , 2006 .

[8]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[9]  R. Bartlett,et al.  Coupled-cluster theory in quantum chemistry , 2007 .

[10]  D. Gottesman An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation , 2009, 0904.2557.

[11]  Austin G. Fowler,et al.  Cavity grid for scalable quantum computation with superconducting circuits , 2007, 0706.3625.

[12]  Michael J. Biercuk,et al.  Optimized dynamical decoupling in a model quantum memory , 2008, Nature.

[13]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[14]  E. Hahn,et al.  Spin Echoes , 2011 .

[15]  Jay M. Gambetta,et al.  Characterizing Quantum Gates via Randomized Benchmarking , 2011, 1109.6887.

[16]  Daniel A. Lidar,et al.  Review of Decoherence‐Free Subspaces, Noiseless Subsystems, and Dynamical Decoupling , 2012, 1208.5791.

[17]  S. Lloyd,et al.  Quantum algorithms for supervised and unsupervised machine learning , 2013, 1307.0411.

[18]  Kenneth R. Brown,et al.  Progress in Compensating Pulse Sequences for Quantum Computation , 2012, 1203.6392.

[19]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[20]  Optimal arbitrarily accurate composite pulse sequences , 2013, 1307.2211.

[21]  Daniel A. Lidar Review of Decoherence‐Free Subspaces, Noiseless Subsystems, and Dynamical Decoupling , 2014 .

[22]  Peter Wittek,et al.  Quantum Machine Learning: What Quantum Computing Means to Data Mining , 2014 .

[23]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[24]  Anmer Daskin Quantum Principal Component Analysis , 2015 .

[25]  P. Coveney,et al.  Scalable Quantum Simulation of Molecular Energies , 2015, 1512.06860.

[26]  Joel J. Wallman,et al.  Noise tailoring for scalable quantum computation via randomized compiling , 2015, 1512.01098.

[27]  L. DiCarlo,et al.  Scalable Quantum Circuit and Control for a Superconducting Surface Code , 2016, 1612.08208.

[28]  Song Han,et al.  Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman Coding , 2015, ICLR.

[29]  Seth Lloyd,et al.  Quantum algorithms for topological and geometric analysis of data , 2016, Nature Communications.

[30]  Roger Melko,et al.  Quantum Boltzmann Machine , 2016, 1601.02036.

[31]  Alán Aspuru-Guzik,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[32]  Kristan Temme,et al.  Error Mitigation for Short-Depth Quantum Circuits. , 2016, Physical review letters.

[33]  J. Carter,et al.  Hybrid Quantum-Classical Hierarchy for Mitigation of Decoherence and Determination of Excited States , 2016, 1603.05681.

[34]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[35]  Xuefei Ning,et al.  Fault-tolerant training with on-line fault detection for RRAM-based neural computing systems , 2017, 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC).

[36]  Ying Li,et al.  Efficient Variational Quantum Simulator Incorporating Active Error Minimization , 2016, 1611.09301.

[37]  Roland Vollgraf,et al.  Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms , 2017, ArXiv.

[38]  Song Han,et al.  AMC: AutoML for Model Compression and Acceleration on Mobile Devices , 2018, ECCV.

[39]  Nathan Killoran,et al.  PennyLane: Automatic differentiation of hybrid quantum-classical computations , 2018, ArXiv.

[40]  Suyog Gupta,et al.  To prune, or not to prune: exploring the efficacy of pruning for model compression , 2017, ICLR.

[41]  Hartmut Neven,et al.  Classification with Quantum Neural Networks on Near Term Processors , 2018, 1802.06002.

[42]  Song Han,et al.  Learning to Design Circuits , 2018, ArXiv.

[43]  Maria Schuld,et al.  Supervised Learning with Quantum Computers , 2018 .

[44]  Ryan Babbush,et al.  Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.

[45]  Jason Cong,et al.  Understanding Performance Differences of FPGAs and GPUs , 2018, 2018 IEEE 26th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM).

[46]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[47]  Andrew W. Cross,et al.  Quantum optimization using variational algorithms on near-term quantum devices , 2017, Quantum Science and Technology.

[48]  Quoc V. Le,et al.  Efficient Neural Architecture Search via Parameter Sharing , 2018, ICML.

[49]  John C. Platt,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[50]  Kristan Temme,et al.  Supervised learning with quantum-enhanced feature spaces , 2018, Nature.

[51]  Fei Yan,et al.  A quantum engineer's guide to superconducting qubits , 2019, Applied Physics Reviews.

[52]  Gushu Li,et al.  Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices , 2018, ASPLOS.

[53]  Margaret Martonosi,et al.  Noise-Adaptive Compiler Mappings for Noisy Intermediate-Scale Quantum Computers , 2019, ASPLOS.

[54]  Marcello Benedetti,et al.  Parameterized quantum circuits as machine learning models , 2019, Quantum Science and Technology.

[55]  Song Han,et al.  MicroNet for Efficient Language Modeling , 2020, NeurIPS.

[56]  P. Zoller,et al.  Self-verifying variational quantum simulation of lattice models , 2018, Nature.

[57]  Tim Kraska,et al.  Park: An Open Platform for Learning-Augmented Computer Systems , 2019, NeurIPS.

[58]  Huiyang Zhou,et al.  Quantum Circuits for Dynamic Runtime Assertions in Quantum Computation , 2019, IEEE Computer Architecture Letters.

[59]  Moinuddin K. Qureshi,et al.  Not All Qubits Are Created Equal: A Case for Variability-Aware Policies for NISQ-Era Quantum Computers , 2018, ASPLOS.

[60]  John Chiaverini,et al.  Trapped-ion quantum computing: Progress and challenges , 2019, Applied Physics Reviews.

[61]  Alán Aspuru-Guzik,et al.  Quantum Chemistry in the Age of Quantum Computing. , 2018, Chemical reviews.

[62]  Ying Li,et al.  Self-consistent tomography of temporally correlated errors , 2020 .

[63]  Margaret Martonosi,et al.  SQUARE: Strategic Quantum Ancilla Reuse for Modular Quantum Programs via Cost-Effective Uncomputation , 2020, 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA).

[64]  Swaroop Ghosh,et al.  Circuit Compilation Methodologies for Quantum Approximate Optimization Algorithm , 2020, 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[65]  F. Chong,et al.  Systematic Crosstalk Mitigation for Superconducting Qubits via Frequency-Aware Compilation , 2020, 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[66]  Xuehai Qian,et al.  AccQOC: Accelerating Quantum Optimal Control Based Pulse Generation , 2020, 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA).

[67]  Frederic T. Chong,et al.  NISQ+: Boosting quantum computing power by approximating quantum error correction , 2020, 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA).

[68]  Maxwell Henderson,et al.  Quanvolutional neural networks: powering image recognition with quantum circuits , 2019, Quantum Machine Intelligence.

[69]  Tirthak Patel,et al.  VERITAS: Accurately Estimating the Correct Output on Noisy Intermediate-Scale Quantum Computers , 2020, SC20: International Conference for High Performance Computing, Networking, Storage and Analysis.

[70]  Margaret Martonosi,et al.  Architecting Noisy Intermediate-Scale Trapped Ion Quantum Computers , 2020, 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA).

[71]  Quantum embeddings for machine learning , 2020, 2001.03622.

[72]  Yuan Xie,et al.  Towards Efficient Superconducting Quantum Processor Architecture Design , 2019, ASPLOS.

[73]  F. Chong,et al.  Quantum Computer Systems: Research for Noisy Intermediate-Scale Quantum Computers , 2020, Quantum Computer Systems.

[74]  Song Han,et al.  Searching Efficient 3D Architectures with Sparse Point-Voxel Convolution , 2020, ECCV.

[75]  Ievgeniia Oshurko Quantum Machine Learning , 2020, Quantum Computing.

[76]  Song Han,et al.  GCN-RL Circuit Designer: Transferable Transistor Sizing with Graph Neural Networks and Reinforcement Learning , 2020, 2020 57th ACM/IEEE Design Automation Conference (DAC).

[77]  Chuang Gan,et al.  Once for All: Train One Network and Specialize it for Efficient Deployment , 2019, ICLR.

[78]  Xiangyu Zhang,et al.  Single Path One-Shot Neural Architecture Search with Uniform Sampling , 2019, ECCV.

[79]  Song Han,et al.  SpArch: Efficient Architecture for Sparse Matrix Multiplication , 2020, 2020 IEEE International Symposium on High Performance Computer Architecture (HPCA).

[80]  Quantum circuit architecture search: error mitigation and trainability enhancement for variational quantum solvers , 2020, ArXiv.

[81]  Song Han,et al.  APQ: Joint Search for Network Architecture, Pruning and Quantization Policy , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[82]  Stefan Woerner,et al.  The power of quantum neural networks , 2020, Nature Computational Science.

[83]  Rohan Basu Roy,et al.  Experimental Evaluation of NISQ Quantum Computers: Error Measurement, Characterization, and Implications , 2020, SC20: International Conference for High Performance Computing, Networking, Storage and Analysis.

[84]  Margaret Martonosi,et al.  Software Mitigation of Crosstalk on Noisy Intermediate-Scale Quantum Computers , 2019, ASPLOS.

[85]  Differentiable Quantum Architecture Search , 2020, 2010.08561.

[86]  Frederic T. Chong,et al.  Virtualized Logical Qubits: A 2.5D Architecture for Error-Corrected Quantum Computing , 2020, 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[87]  Jason Cong,et al.  Optimal Layout Synthesis for Quantum Computing , 2020, 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD).

[88]  Frederic T. Chong,et al.  Optimized Quantum Compilation for Near-Term Algorithms with OpenPulse , 2020, 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[89]  Song Han,et al.  HAT: Hardware-Aware Transformers for Efficient Natural Language Processing , 2020, ACL.

[90]  Chang-Yu Hsieh,et al.  Neural predictor based quantum architecture search , 2021, Mach. Learn. Sci. Technol..

[91]  Chi Zhang,et al.  Time-optimal Qubit mapping , 2021, ASPLOS.

[92]  Huiyang Zhou,et al.  Systematic Approaches for Precise and Approximate Quantum State Runtime Assertion , 2021, 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA).

[93]  Wei Tang,et al.  CutQC: using small Quantum computers for large Quantum circuit evaluations , 2020, ASPLOS.

[94]  Jason Cong,et al.  Optimal Qubit Mapping with Simultaneous Gate Absorption , 2021, ArXiv.

[95]  Margaret Martonosi,et al.  Designing Calibration and Expressivity-Efficient Instruction Sets for Quantum Computing , 2021, 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA).

[96]  Jinjun Xiong,et al.  Can Noise on Qubits Be Learned in Quantum Neural Network? A Case Study on QuantumFlow (Invited Paper) , 2021, 2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD).

[97]  Ray T. Chen,et al.  Efficient On-Chip Learning for Optical Neural Networks Through Power-Aware Sparse Zeroth-Order Optimization , 2020, AAAI.

[98]  Tirthak Patel,et al.  Qraft: reverse your Quantum circuit and know the correct program output , 2021, ASPLOS.

[99]  Jinjun Xiong,et al.  Exploration of Quantum Neural Architecture by Mixing Quantum Neuron Designs: (Invited Paper) , 2021, 2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD).

[100]  D. Deng,et al.  Markovian Quantum Neuroevolution for Machine Learning , 2020, Physical Review Applied.

[101]  Yunong Shi,et al.  Software-Hardware Co-Optimization for Computational Chemistry on Superconducting Quantum Processors , 2021, 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA).

[102]  Ray T. Chen,et al.  SqueezeLight: Towards Scalable Optical Neural Networks with Multi-Operand Ring Resonators , 2021, 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[103]  Igor L. Markov,et al.  Faster Schrödinger-style simulation of quantum circuits , 2020, 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA).

[104]  Frederic T. Chong,et al.  Exploiting Long-Distance Interactions and Tolerating Atom Loss in Neutral Atom Quantum Architectures , 2021, 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA).

[105]  David Z. Pan,et al.  RoQNN: Noise-Aware Training for Robust Quantum Neural Networks , 2021, ArXiv.

[106]  Youtao Zhang,et al.  AutoBraid: A Framework for Enabling Efficient Surface Code Communication in Quantum Computing , 2021, MICRO.

[107]  Hanrui Wang,et al.  SpAtten: Efficient Sparse Attention Architecture with Cascade Token and Head Pruning , 2020, 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA).

[108]  Moinuddin K. Qureshi,et al.  ADAPT: Mitigating Idling Errors in Qubits via Adaptive Dynamical Decoupling , 2021, MICRO.

[109]  S. Benjamin,et al.  Learning-Based Quantum Error Mitigation , 2020, PRX Quantum.

[110]  Patrick J. Coles,et al.  Error mitigation with Clifford quantum-circuit data , 2020, Quantum.

[111]  Ray T. Chen,et al.  Toward Hardware-Efficient Optical Neural Networks: Beyond FFT Architecture via Joint Learnability , 2021, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[112]  Moinuddin K. Qureshi,et al.  JigSaw: Boosting Fidelity of NISQ Programs via Measurement Subsetting , 2021, MICRO.

[113]  Frederic T. Chong,et al.  Orchestrated trios: compiling for efficient communication in Quantum programs with 3-Qubit gates , 2021, ASPLOS.

[114]  Xiaolong Ma,et al.  Improving DNN Fault Tolerance using Weight Pruning and Differential Crossbar Mapping for ReRAM-based Edge AI , 2021, 2021 22nd International Symposium on Quality Electronic Design (ISQED).

[115]  Guy Van den Broeck,et al.  Logical abstractions for noisy variational Quantum algorithm simulation , 2021, ASPLOS.

[116]  Lei Liu,et al.  QuCloud: A New Qubit Mapping Mechanism for Multi-programming Quantum Computing in Cloud Environment , 2021, 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA).

[117]  Lei Xie,et al.  Exploiting Different Levels of Parallelism in the Quantum Control Microarchitecture for Superconducting Qubits , 2021, MICRO.

[118]  Frederic T. Chong,et al.  TILT: Achieving Higher Fidelity on a Trapped-Ion Linear-Tape Quantum Computing Architecture , 2020, 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA).

[119]  Pak Hong Leung,et al.  Hidden Inverses: Coherent Error Cancellation at the Circuit Level , 2021, Physical Review Applied.