Parallel Markov Chain Monte Carlo Methods for Large Scale Statistical Inverse Problems

The Bayesian method has proven to be a powerful way of modeling inverse problems. The solution to Bayesian inverse problems is the posterior distribution of estimated parameters which can provide not only estimates for the inferred parameters but also the uncertainty of these estimations. Markov chain Monte Carlo (MCMC) is a useful technique to sample the posterior distribution and information can be extracted from the sampled ensemble. However, MCMC is very expensive to compute, especially in inverse problems where the underlying forward problems involve solving differential equations. Even worse, MCMC is difficult to parallelize due to its sequential nature—that is, under the current framework, we can barely accelerate MCMC with parallel computing. We develop a new framework of parallel MCMC algorithms—the Markov chain preconditioned Monte Carlo (MCPMC) method—for sampling Bayesian inverse problems. With the help of a fast auxiliary MCMC chain running on computationally cheaper approximate models, which serves as a stochastic preconditioner to the target distribution, the sampler randomly selects candidates from the preconditioning chain for further processing on the accurate model. As this accurate model processing can be executed in parallel, the algorithm is suitable for parallel systems. We implement it using a modified master-slave architecture, analyze its potential to accelerate sampling and apply it to three examples. A two dimensional Gaussian mixture example shows that the new sampler can bring statistical efficiency in addition to increasing sampling speed. Through a 2D inverse problem with an elliptic equation as the forward model, we demonstrate the use of an enhanced error model to build the preconditioner. With a 3D optical tomography problem we use

[1]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[2]  Maxim Likhachev,et al.  Multi-Resolution A , 2020, SOCS.

[3]  Yalchin Efendiev,et al.  Preconditioning Markov Chain Monte Carlo Simulations Using Coarse-Scale Models , 2006, SIAM J. Sci. Comput..

[4]  George Casella,et al.  A Short History of Markov Chain Monte Carlo: Subjective Recollections from Incomplete Data , 2008, 0808.2902.

[5]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[6]  Charles J. Geyer,et al.  Practical Markov Chain Monte Carlo , 1992 .

[7]  A. O'Hagan,et al.  Predicting the output from a complex computer code when fast approximations are available , 2000 .

[8]  R. Tweedie,et al.  Rates of convergence of the Hastings and Metropolis algorithms , 1996 .

[9]  Eric L. Miller,et al.  Imaging the body with diffuse optical tomography , 2001, IEEE Signal Process. Mag..

[10]  Anthony Brockwell Parallel Markov chain Monte Carlo Simulation by Pre-Fetching , 2006 .

[11]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[12]  Jun S. Liu,et al.  The Multiple-Try Method and Local Optimization in Metropolis Sampling , 2000 .

[13]  Malcolm Sambridge,et al.  Transdimensional inversion of receiver functions and surface wave dispersion , 2012 .

[14]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[15]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[16]  Endre Süli,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[17]  B. Carlin,et al.  Diagnostics: A Comparative Review , 2022 .

[18]  R. Carroll,et al.  Advanced Markov Chain Monte Carlo Methods: Learning from Past Samples , 2010 .

[19]  Wolfgang Bangerth,et al.  A framework for the adaptive finite element solution of large inverse problems. I. Basic techniques , 2004 .

[20]  James Martin,et al.  A Stochastic Newton MCMC Method for Large-Scale Statistical Inverse Problems with Application to Seismic Inversion , 2012, SIAM J. Sci. Comput..

[21]  Heikki Haario,et al.  DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..

[22]  David Isaacson,et al.  Electrical Impedance Tomography , 2002, IEEE Trans. Medical Imaging.

[23]  Ville Kolehmainen,et al.  Approximation errors and model reduction in three-dimensional diffuse optical tomography. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[24]  W. Wong,et al.  Real-Parameter Evolutionary Monte Carlo With Applications to Bayesian Mixture Models , 2001 .

[25]  Stephen J. Wright,et al.  Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .

[26]  P. Priouret,et al.  Bayesian Time Series Models: Adaptive Markov chain Monte Carlo: theory and methods , 2011 .

[27]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[28]  W. Marsden I and J , 2012 .

[29]  Arnaud Doucet,et al.  Sequentially interacting Markov chain Monte Carlo methods , 2010, 1211.2582.

[30]  P. Green,et al.  Reversible jump MCMC , 2009 .

[31]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[32]  A Tikhonov,et al.  Solution of Incorrectly Formulated Problems and the Regularization Method , 1963 .

[33]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[34]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[35]  S. Arridge Optical tomography in medical imaging , 1999 .

[36]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[37]  G. Casella,et al.  Statistical Inference , 2003, Encyclopedia of Social Network Analysis and Mining.

[38]  Andrew Gelman,et al.  General methods for monitoring convergence of iterative simulations , 1998 .

[39]  Michael W Deem,et al.  Parallel tempering: theory, applications, and new perspectives. , 2005, Physical chemistry chemical physics : PCCP.

[40]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .

[41]  Wolfgang Bangerth,et al.  Adaptive finite element methods for the solution of inverse problems in optical tomography , 2008 .

[42]  Ning Liu,et al.  Inverse Theory for Petroleum Reservoir Characterization and History Matching , 2008 .

[43]  J. Keller,et al.  Asymptotic solution of neutron transport problems for small mean free paths , 1974 .

[44]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[45]  Nicholas Zabaras,et al.  Hierarchical Bayesian models for inverse problems in heat conduction , 2005 .

[46]  Mrinal K. Sen,et al.  Global Optimization Methods in Geophysical Inversion , 1995 .

[47]  J. Rosenthal,et al.  Coupling and Ergodicity of Adaptive Markov Chain Monte Carlo Algorithms , 2007, Journal of Applied Probability.

[48]  Christina Freytag,et al.  Using Mpi Portable Parallel Programming With The Message Passing Interface , 2016 .

[49]  S. Arridge,et al.  Optical tomography: forward and inverse problems , 2009, 0907.2586.

[50]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[51]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[52]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[53]  E. Somersalo,et al.  Approximation errors and model reduction with an application in optical diffusion tomography , 2006 .

[54]  Bangti Jin,et al.  A variational Bayesian method to inverse problems with impulsive noise , 2011, J. Comput. Phys..

[55]  Wolfgang Bangerth,et al.  Fully adaptive FEM based fluorescence optical tomography from time-dependent measurements with area illumination and detection. , 2006, Medical physics.

[56]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .