An addition theorem and maximal zero-sum free sets in Z/pZ

Using the polynomial method in additive number theory, this article establishes a new addition theorem for the set of subsums of a set satisfying $A\cap(-A)=\emptyset$ in $\mathbb{Z}/p\mathbb{Z}$: \[|\Sigma(A)|\geqslant\min{p,1+\frac{|A|(|A|+1)}{2}}.\] The proof is similar in nature to Alon, Nathanson and Ruzsa's proof of the Erd\"os-Heilbronn conjecture (proved initially by Dias da Silva and Hamidoune \cite{DH}). A key point in the proof of this theorem is the evaluation of some binomial determinants that have been studied in the work of Gessel and Viennot. A generalization to the set of subsums of a sequence is derived, leading to a structural result on zero-sum free sequences. As another application, it is established that for any prime number $p$, a maximal zero-sum free set in $\mathbb{Z}/p\mathbb{Z}$ has cardinality the greatest integer $k$ such that \[\frac{k(k+1)}{2}

[1]  P. Erdos,et al.  Old and new problems and results in combinatorial number theory , 1980 .

[2]  M. Kneser,et al.  Abschätzung der asymptotischen Dichte von Summenmengen , 1953 .

[3]  Harold Davenport,et al.  On the Addition of Residue Classes , 1935 .

[4]  Zhi-Wei Sun,et al.  Sums of subsets with polynomial restrictions , 2002 .

[5]  M. Kneser,et al.  Ein Satz über abelsche Gruppen mit Anwendungen auf die Geometrie der Zahlen , 1954 .

[6]  Alfred Geroldinger,et al.  Non-unique factorizations , 2006 .

[7]  H. B. Mann,et al.  An addition theorem for the elementary Abelian group of type (p, p) , 1986 .

[8]  John E. Olson,et al.  An addition theorem modulo p , 1968 .

[9]  Noga Alon Combinatorial Nullstellensatz , 1999, Combinatorics, Probability and Computing.

[10]  Endre Szemerédi,et al.  On a conjecture of Erdös and Heilbronn , 1970 .

[11]  E. M. Horadam An unsolved problem in number theory , 1968 .

[12]  Noga Alon,et al.  Adding Distinct Congruence Classes Modulo a Prime , 1995 .

[13]  Yahya Ould Hamidoune,et al.  On zero-free subset sums , 1996 .

[14]  J. A. Dias da Silva,et al.  Cyclic Spaces for Grassmann Derivatives and Additive Theory , 1994 .

[15]  Yahya Ould Hamidoune,et al.  On complete subsets of the cyclic group , 2007, J. Comb. Theory, Ser. A.

[16]  Alfred Geroldinger,et al.  Non-Unique Factorizations : Algebraic, Combinatorial and Analytic Theory , 2006 .

[17]  Oystein J. Riidseth On the Addition of Residue Classes mod p , 1996 .

[18]  I. Gessel,et al.  Binomial Determinants, Paths, and Hook Length Formulae , 1985 .

[19]  Harold Davenport,et al.  A Historical Note , 1947 .

[20]  A. Cauchy Oeuvres complètes: Recherches sur les nombres , 2009 .

[21]  Zhi-Wei Sun,et al.  A new extension of the Erdos-Heilbronn conjecture , 2007, J. Comb. Theory, Ser. A.

[22]  Henry B. Mann An Addition Theorem for Sets of Elements of Abelian Groups , 1953 .

[23]  Une variante de la méthode isopérimétrique de Hamidoune, appliquée au théorème de Kneser , 2008 .

[24]  Yahya Ould Hamidoune,et al.  Zero-sumfree sequences in cyclic groups and some arithmetical application , 2002 .

[25]  Melvyn B. Nathanson,et al.  Additive Number Theory: Inverse Problems and the Geometry of Sumsets , 1996 .

[26]  Noga Alon,et al.  The Polynomial Method and Restricted Sums of Congruence Classes , 1996 .

[27]  G. Diderrich,et al.  An addition theorem for Abelian groups of order pq , 1975 .

[28]  Gyan Prakash,et al.  Large Zero-Free Subsets of Z/pZ , 2011, Integers.

[29]  I. Chowla,et al.  A theorem on the addition of residue classes: Application to the numberΓ(k) in waring’s problem , 1935 .

[30]  Weidong Gao,et al.  The critical number of finite abelian groups , 2008 .

[31]  Alfred Geroldinger,et al.  Combinatorial Number Theory and Additive Group Theory , 2009 .

[32]  Mateusz Michalek A Short Proof of Combinatorial Nullstellensatz , 2010, Am. Math. Mon..