Q-learning and hyper-heuristic based algorithm recommendation for changing environments

[1]  Salwani Abdullah,et al.  A dual-population multi operators harmony search algorithm for dynamic optimization problems , 2018, Comput. Ind. Eng..

[2]  Hartmut Schmeck,et al.  Designing evolutionary algorithms for dynamic optimization problems , 2003 .

[3]  A. Sima Etaner-Uyar,et al.  Selection hyper-heuristics in dynamic environments , 2013, J. Oper. Res. Soc..

[4]  George L. Nemhauser,et al.  The uncapacitated facility location problem , 1990 .

[5]  A. Sima Etaner-Uyar,et al.  A hybrid multi-population framework for dynamic environments combining online and offline learning , 2013, Soft Comput..

[6]  Andries Petrus Engelbrecht,et al.  Multi-method algorithms: Investigating the entity-to-algorithm allocation problem , 2013, 2013 IEEE Congress on Evolutionary Computation.

[7]  Fehmi Burcin Özsoydan,et al.  Evolutionary and adaptive inheritance enhanced Grey Wolf Optimization algorithm for binary domains , 2020, Knowl. Based Syst..

[8]  Gürsel A. Süer,et al.  Stochastic mixed-model assembly line sequencing problem: Mathematical modeling and Q-learning based simulated annealing hyper-heuristics , 2019, Eur. J. Oper. Res..

[9]  Xin Yao,et al.  Experimental study on population-based incremental learning algorithms for dynamic optimization problems , 2005, Soft Comput..

[10]  Andries Petrus Engelbrecht,et al.  Analysis of selection hyper-heuristics for population-based meta-heuristics in real-valued dynamic optimization , 2018, Swarm Evol. Comput..

[11]  Peter Dayan,et al.  Q-learning , 1992, Machine Learning.

[12]  P. N. Suganthan,et al.  Ensemble particle swarm optimizer , 2017, Appl. Soft Comput..

[13]  Laith Mohammad Abualigah,et al.  Hybrid clustering analysis using improved krill herd algorithm , 2018, Applied Intelligence.

[14]  Wasim Ahmad,et al.  A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series , 2020 .

[15]  Ahmad M. Khasawneh,et al.  A parallel hybrid krill herd algorithm for feature selection , 2020, Int. J. Mach. Learn. Cybern..

[16]  Li Li,et al.  Adaptive recommendation model using meta-learning for population-based algorithms , 2019, Inf. Sci..

[17]  Tad Hogg,et al.  An Economics Approach to Hard Computational Problems , 1997, Science.

[18]  A. Sima Etaner-Uyar,et al.  A NOVEL CHANGE SEVERITY DETECTION MECHANISM FOR THE DYNAMIC 0 / 1 KNAPSACK PROBLEM , 2004 .

[19]  Anton J. Kleywegt,et al.  The Dynamic and Stochastic Knapsack Problem , 1998, Oper. Res..

[20]  Xin Yao,et al.  Population-based Algorithm Portfolios with automated constituent algorithms selection , 2014, Inf. Sci..

[21]  Laith Abualigah,et al.  Multi-verse optimizer algorithm: a comprehensive survey of its results, variants, and applications , 2020, Neural Computing and Applications.

[22]  Fehmi Burcin Ozsoydan,et al.  Artificial search agents with cognitive intelligence for binary optimization problems , 2019, Comput. Ind. Eng..

[23]  Liying Wang,et al.  Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications , 2020, Eng. Appl. Artif. Intell..

[24]  Michel Gendreau,et al.  Hyper-heuristics: a survey of the state of the art , 2013, J. Oper. Res. Soc..

[25]  Andrew Lewis,et al.  The Whale Optimization Algorithm , 2016, Adv. Eng. Softw..

[26]  Adil Baykasoglu,et al.  Quantum firefly swarms for multimodal dynamic optimization problems , 2019, Expert Syst. Appl..

[27]  Carlos A. Coello Coello,et al.  A T-cell algorithm for solving dynamic optimization problems , 2011, Inf. Sci..

[28]  Adil Baykasoglu,et al.  Dynamic optimization in binary search spaces via weighted superposition attraction algorithm , 2018, Expert Syst. Appl..

[29]  P. Subbaraj,et al.  A nondominated sorting genetic algorithm solution for shortest path routing problem in computer networks , 2012, Expert Syst. Appl..

[30]  Aytaç Altan,et al.  THE EFFECT OF KERNEL VALUES IN SUPPORT VECTOR MACHINE TO FORECASTING PERFORMANCE OF FINANCIAL TIME SERIES , 2019 .

[31]  Ali Diabat,et al.  A comprehensive survey of the Grasshopper optimization algorithm: results, variants, and applications , 2020, Neural Computing and Applications.

[32]  Graham Kendall,et al.  A Tabu-Search Hyperheuristic for Timetabling and Rostering , 2003, J. Heuristics.

[33]  J. Hartman,et al.  Approximating the solution of a dynamic, stochastic multiple knapsack problem , 2006 .

[34]  Adil Baykasoglu,et al.  An improved firefly algorithm for solving dynamic multidimensional knapsack problems , 2014, Expert Syst. Appl..

[35]  Peter J. Bentley,et al.  Dynamic Search With Charged Swarms , 2002, GECCO.

[36]  Reza Tavakkoli-Moghaddam,et al.  A genetic algorithm using priority-based encoding with new operators for fixed charge transportation problems , 2013, Appl. Soft Comput..

[37]  Hossam Faris,et al.  Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems , 2017, Adv. Eng. Softw..

[38]  Shengxiang Yang,et al.  A memetic algorithm with adaptive hill climbing strategy for dynamic optimization problems , 2009, Soft Comput..

[39]  Shengxiang Yang,et al.  Evolutionary dynamic optimization: A survey of the state of the art , 2012, Swarm Evol. Comput..

[40]  Graham Kendall,et al.  Hyper-Heuristics: An Emerging Direction in Modern Search Technology , 2003, Handbook of Metaheuristics.

[41]  O. Goldschmidt,et al.  Note: On the set-union knapsack problem , 1994 .

[42]  Andries Petrus Engelbrecht,et al.  Heuristic space diversity control for improved meta-hyper-heuristic performance , 2015, Inf. Sci..

[43]  Francisco Herrera,et al.  A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms , 2011, Swarm Evol. Comput..

[44]  Adil Baykasoglu,et al.  Evolutionary and population-based methods versus constructive search strategies in dynamic combinatorial optimization , 2017, Inf. Sci..

[45]  Enrico Zio,et al.  A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer , 2021, Appl. Soft Comput..