Assisted sampling of correlated sources

We study a distributed sampling scenario in which two agents observing components of a correlated source must each generate components of a second correlated source. The agents are aided by an “omniscient” third terminal which observes the two input sources and transmits rate-limited messages to assist the terminals in generating the required correlation in their outputs. We identify two sub-cases of this problem based on how the generated sources must depend on the input sources.

[1]  Vinod M. Prabhakaran,et al.  Assisted Common Information with Applications to Secure Two-Party Computation , 2010, ArXiv.

[2]  Aaron D. Wyner,et al.  The common information of two dependent random variables , 1975, IEEE Trans. Inf. Theory.

[3]  Amin Gohari,et al.  Coordination via a relay , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[4]  Abbas El Gamal,et al.  Network Information Theory , 2021, 2021 IEEE 3rd International Conference on Advanced Trends in Information Theory (ATIT).

[5]  Elchanan Mossel,et al.  On Extracting Common Random Bits From Correlated Sources , 2010, IEEE Transactions on Information Theory.

[6]  Imre Csiszár,et al.  Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .

[7]  H. Witsenhausen ON SEQUENCES OF PAIRS OF DEPENDENT RANDOM VARIABLES , 1975 .

[8]  Vivek S. Borkar,et al.  Common randomness and distributed control: A counterexample , 2007, Systems & control letters (Print).

[9]  Paul W. Cuff,et al.  Distributed Channel Synthesis , 2012, IEEE Transactions on Information Theory.

[10]  Vinod M. Prabhakaran,et al.  Assisted Common Information With an Application to Secure Two-Party Sampling , 2014, IEEE Transactions on Information Theory.

[11]  Thomas M. Cover,et al.  Network Information Theory , 2001 .

[12]  Venkat Anantharam,et al.  Non-interactive simulation of joint distributions: The Hirschfeld-Gebelein-Rényi maximal correlation and the hypercontractivity ribbon , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[13]  Haim H. Permuter,et al.  Coordination Capacity , 2009, IEEE Transactions on Information Theory.

[14]  Paul W. Cuff,et al.  Communication requirements for generating correlated random variables , 2008, 2008 IEEE International Symposium on Information Theory.

[15]  Amin Gohari,et al.  Channel Simulation via Interactive Communications , 2012, IEEE Transactions on Information Theory.

[16]  I. M. Jacobs,et al.  Principles of Communication Engineering , 1965 .

[17]  Peter W. Shor,et al.  Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem , 2001, IEEE Trans. Inf. Theory.

[18]  Venkat Anantharam,et al.  Generating dependent random variables over networks , 2011, 2011 IEEE Information Theory Workshop.

[19]  Tetsunao Matsuta,et al.  国際会議開催報告:2013 IEEE International Symposium on Information Theory , 2013 .

[20]  Amin Gohari,et al.  Achievability Proof via Output Statistics of Random Binning , 2012, IEEE Transactions on Information Theory.