Induced connections on virtual holonomic constraints
暂无分享,去创建一个
[1] B. Schmidt,et al. Conditions on a connection to be a metric connection , 1973 .
[2] Leonid B. Freidovich,et al. Transverse Linearization for Controlled Mechanical Systems With Several Passive Degrees of Freedom , 2010, IEEE Transactions on Automatic Control.
[3] J. Milnor. Topology from the differentiable viewpoint , 1965 .
[4] Alessandro Astolfi,et al. Total Energy Shaping Control of Mechanical Systems: Simplifying the Matching Equations Via Coordinate Changes , 2007, IEEE Transactions on Automatic Control.
[5] John M. Lee. Introduction to Smooth Manifolds , 2002 .
[6] E. Westervelt,et al. Feedback Control of Dynamic Bipedal Robot Locomotion , 2007 .
[7] Christine Chevallereau,et al. Asymptotically Stable Walking of a Five-Link Underactuated 3-D Bipedal Robot , 2009, IEEE Transactions on Robotics.
[8] R. Johansson,et al. Periodic motions of the Pendubot via virtual holonomic constraints: Theory and experiments , 2008, Autom..
[9] Franck Plestan,et al. Stable walking of a 7-DOF biped robot , 2003, IEEE Trans. Robotics Autom..
[10] Carlos Canudas-de-Wit,et al. Constructive tool for orbital stabilization of underactuated nonlinear systems: virtual constraints approach , 2005, IEEE Transactions on Automatic Control.
[11] Daniel E. Koditschek,et al. Hybrid zero dynamics of planar biped walkers , 2003, IEEE Trans. Autom. Control..
[12] SPRAYS , 1967 .
[13] A. Shiriaev,et al. Periodic motion planning for virtually constrained Euler-Lagrange systems , 2006, Syst. Control. Lett..
[14] Luca Consolini,et al. Virtual Holonomic Constraints for Euler-Lagrange Systems , 2010 .
[15] Gerard Thompson. Local and Global Existence of Metrics in Two-dimensional Affine Manifolds , 1991 .
[16] Jun Nakanishi,et al. A brachiating robot controller , 2000, IEEE Trans. Robotics Autom..
[17] Luca Consolini,et al. When Is a Lagrangian Control System with Virtual Holonomic Constraints Lagrangian? , 2013, NOLCOS.