Induced connections on virtual holonomic constraints

A virtual holonomic constraint is a relation among the coordinates of a mechanical system that can be made invariant via feedback control. This paper frames virtual holonomic constraints in an affine geometry setting, describing the dynamics on the constraint as the geodesics of a connection (the induced connection) derived from the Levi-Civita connection of the mechanical system. It also presents conditions for the constraint dynamics to be Lagrangian, based on the metrizability properties of the induced connection.

[1]  B. Schmidt,et al.  Conditions on a connection to be a metric connection , 1973 .

[2]  Leonid B. Freidovich,et al.  Transverse Linearization for Controlled Mechanical Systems With Several Passive Degrees of Freedom , 2010, IEEE Transactions on Automatic Control.

[3]  J. Milnor Topology from the differentiable viewpoint , 1965 .

[4]  Alessandro Astolfi,et al.  Total Energy Shaping Control of Mechanical Systems: Simplifying the Matching Equations Via Coordinate Changes , 2007, IEEE Transactions on Automatic Control.

[5]  John M. Lee Introduction to Smooth Manifolds , 2002 .

[6]  E. Westervelt,et al.  Feedback Control of Dynamic Bipedal Robot Locomotion , 2007 .

[7]  Christine Chevallereau,et al.  Asymptotically Stable Walking of a Five-Link Underactuated 3-D Bipedal Robot , 2009, IEEE Transactions on Robotics.

[8]  R. Johansson,et al.  Periodic motions of the Pendubot via virtual holonomic constraints: Theory and experiments , 2008, Autom..

[9]  Franck Plestan,et al.  Stable walking of a 7-DOF biped robot , 2003, IEEE Trans. Robotics Autom..

[10]  Carlos Canudas-de-Wit,et al.  Constructive tool for orbital stabilization of underactuated nonlinear systems: virtual constraints approach , 2005, IEEE Transactions on Automatic Control.

[11]  Daniel E. Koditschek,et al.  Hybrid zero dynamics of planar biped walkers , 2003, IEEE Trans. Autom. Control..

[12]  SPRAYS , 1967 .

[13]  A. Shiriaev,et al.  Periodic motion planning for virtually constrained Euler-Lagrange systems , 2006, Syst. Control. Lett..

[14]  Luca Consolini,et al.  Virtual Holonomic Constraints for Euler-Lagrange Systems , 2010 .

[15]  Gerard Thompson Local and Global Existence of Metrics in Two-dimensional Affine Manifolds , 1991 .

[16]  Jun Nakanishi,et al.  A brachiating robot controller , 2000, IEEE Trans. Robotics Autom..

[17]  Luca Consolini,et al.  When Is a Lagrangian Control System with Virtual Holonomic Constraints Lagrangian? , 2013, NOLCOS.