Asymptotic regularity for Lipschitzian nonlinear optimization problems with applications to complementarity constrained and bilevel programming

Asymptotic stationarity and regularity conditions turned out to be quite useful to study the qualitative properties of numerical solution methods for standard nonlinear and complementarity-constrained programs. In this paper, we first extend these notions to nonlinear optimization problems with nonsmooth but Lipschitzian data functions in order to find reasonable notions of asymptotic stationarity and regularity in terms of Clarke’s and Mordukhovich’s subdifferential construction. Particularly, we compare the associated novel asymptotic constraint qualifications with already existing ones. The second part of the paper presents two applications of the obtained theory. On the one hand, we specify our findings for complementarity-constrained optimization problems and recover recent results from the literature which demonstrates the power of the approach. Furthermore, we hint at potential extensions to orand vanishing-constrained optimization. On the other hand, we demonstrate the usefulness of asymptotic regularity in the context of bilevel optimization. More precisely, we justify a well-known stationarity system for affinely constrained bilevel optimization problems in a novel way. Afterwards, we suggest a solution algorithm for this class of bilevel

[1]  Lorenzo Lampariello,et al.  A Bridge Between Bilevel Programs and Nash Games , 2015, J. Optim. Theory Appl..

[2]  Le Thi Hoai An,et al.  DC programming techniques for solving a class of nonlinear bilevel programs , 2009, J. Glob. Optim..

[3]  Jorge J. Moré,et al.  Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .

[4]  Christian Kanzow,et al.  Sequential optimality conditions for cardinality-constrained optimization problems with applications , 2021, Comput. Optim. Appl..

[5]  Patrick Mehlitz,et al.  Stationarity conditions and constraint qualifications for mathematical programs with switching constraints , 2020, Math. Program..

[6]  José Mario Martínez,et al.  Strict Constraint Qualifications and Sequential Optimality Conditions for Constrained Optimization , 2018, Math. Oper. Res..

[7]  Le Thi Hoai An,et al.  DC programming and DCA: thirty years of developments , 2018, Math. Program..

[8]  G. Anandalingam,et al.  A penalty function approach for solving bi-level linear programs , 1993, J. Glob. Optim..

[9]  Jane J. Ye,et al.  Optimality conditions for bilevel programming problems , 1995 .

[10]  Alberto Ramos Mathematical programs with equilibrium constraints: a sequential optimality condition, new constraint qualifications and algorithmic consequences , 2021, Optim. Methods Softw..

[11]  Stephan Dempe,et al.  The bilevel programming problem: reformulations, constraint qualifications and optimality conditions , 2013, Math. Program..

[12]  Ademir A. Ribeiro,et al.  A sequential optimality condition for Mathematical Programs with Cardinality Constraints , 2020 .

[13]  Stephan Dempe,et al.  Solving inverse optimal control problems via value functions to global optimality , 2019, J. Glob. Optim..

[14]  F. J. A. Artacho,et al.  The Boosted DC Algorithm for linearly constrained DC programming , 2019, 1908.01138.

[15]  Stephan Dempe,et al.  Foundations of Bilevel Programming , 2002 .

[16]  R. Andreani,et al.  New Sequential Optimality Conditions for Mathematical Programs with Complementarity Constraints and Algorithmic Consequences , 2019, SIAM J. Optim..

[17]  José Mario Martínez,et al.  A Cone-Continuity Constraint Qualification and Algorithmic Consequences , 2016, SIAM J. Optim..

[18]  Stephan Dempe,et al.  Is bilevel programming a special case of a mathematical program with complementarity constraints? , 2012, Math. Program..

[19]  Christian Kanzow,et al.  First-and second-order optimality conditions for mathematical programs with vanishing constraints , 2007 .

[20]  P. Mehlitz,et al.  R-Regularity of Set-Valued Mappings Under the Relaxed Constant Positive Linear Dependence Constraint Qualification with Applications to Parametric and Bilevel Optimization , 2020, Set-Valued and Variational Analysis.

[21]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[22]  Alain B. Zemkoho,et al.  A note on partial calmness for bilevel optimization problems with linearly structured lower level , 2020, Optimization Letters.

[23]  Aurél Galántai Properties and construction of NCP functions , 2012, Comput. Optim. Appl..

[24]  P. Mehlitz Asymptotic stationarity and regularity for nonsmooth optimization problems , 2020, Journal of Nonsmooth Analysis and Optimization.

[25]  R. Horst,et al.  DC Programming: Overview , 1999 .

[26]  Stephan Dempe,et al.  Bilevel Optimization: Theory, Algorithms, Applications and a Bibliography , 2020, Bilevel Optimization.

[27]  Elias Salomão Helou Neto,et al.  A New Sequential Optimality Condition for Constrained Nonsmooth Optimization , 2020, SIAM J. Optim..

[28]  Kalyanmoy Deb,et al.  Approximate KKT points and a proximity measure for termination , 2013, J. Glob. Optim..

[29]  Nguyen Huy Chieu,et al.  A Relaxed Constant Positive Linear Dependence Constraint Qualification for Mathematical Programs with Equilibrium Constraints , 2013, J. Optim. Theory Appl..

[30]  Shenglong Zhou,et al.  BOLIB: Bilevel Optimization LIBrary of Test Problems , 2018, 1812.00230.

[31]  Jane J. Ye,et al.  Nondifferentiable Multiplier Rules for Optimization and Bilevel Optimization Problems , 2004, SIAM J. Optim..

[32]  S. Dempe,et al.  On the solution of convex bilevel optimization problems , 2015, Computational Optimization and Applications.

[33]  Patrick Mehlitz,et al.  On implicit variables in optimization theory , 2021, Journal of Nonsmooth Analysis and Optimization.

[34]  Jane J. Ye,et al.  Difference of convex algorithms for bilevel programs with applications in hyperparameter selection , 2021, Mathematical programming.

[35]  Nataliya I. Kalashnykova,et al.  Bilevel Programming Problems: Theory, Algorithms and Applications to Energy Networks , 2015 .

[36]  Jane J. Ye,et al.  New Necessary Optimality Conditions for Bilevel Programs by Combining the MPEC and Value Function Approaches , 2010, SIAM J. Optim..

[37]  S. Nobakhtian,et al.  Constraint Qualifications for Nonsmooth Mathematical Programs with Equilibrium Constraints , 2009 .

[38]  Paulo J. S. Silva,et al.  A relaxed constant positive linear dependence constraint qualification and applications , 2011, Mathematical Programming.

[39]  Christian Kanzow,et al.  New Constraint Qualifications for Optimization Problems in Banach Spaces Based on Asymptotic KKT Conditions , 2020, SIAM J. Optim..

[40]  Alexandra Schwartz,et al.  A study of one-parameter regularization methods for mathematical programs with vanishing constraints , 2020, Optim. Methods Softw..

[41]  Patrick Mehlitz,et al.  A comparison of solution approaches for the numerical treatment of or-constrained optimization problems , 2020, Comput. Optim. Appl..

[42]  Christian Kanzow,et al.  Mathematical programs with vanishing constraints: optimality conditions and constraint qualifications , 2008, Math. Program..

[43]  Roberto Andreani,et al.  Optimality conditions and global convergence for nonlinear semidefinite programming , 2018, Mathematical Programming.

[44]  R. Andreani,et al.  On Sequential Optimality Conditions , 2009 .

[45]  Jirí V. Outrata,et al.  A note on the usage of nondifferentiable exact penalties in some special optimization problems , 1988, Kybernetika.

[46]  M. Fukushima,et al.  New NCP-Functions and Their Properties , 1997 .

[47]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[48]  Jonathan F. Bard,et al.  An explicit solution to the multi-level programming problem , 1982, Comput. Oper. Res..

[49]  Jane J. Ye,et al.  First Order Optimality Conditions for Generalized Semi-Infinite Programming Problems , 2008 .

[50]  Roberto Andreani,et al.  A Sequential Optimality Condition Related to the Quasi-normality Constraint Qualification and Its Algorithmic Consequences , 2019, SIAM J. Optim..

[51]  Jane J. Ye,et al.  Relaxed constant positive linear dependence constraint qualification and its application to bilevel programs , 2020, J. Glob. Optim..

[52]  Michal Kočvara,et al.  Nonsmooth approach to optimization problems with equilibrium constraints : theory, applications, and numerical results , 1998 .

[53]  José Mario Martínez,et al.  A New Sequential Optimality Condition for Constrained Optimization and Algorithmic Consequences , 2010, SIAM J. Optim..

[54]  Jane J. Ye,et al.  Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints , 2005 .

[55]  Patrice Marcotte,et al.  Bilevel Programming , 2009, Encyclopedia of Optimization.

[56]  Boris S. Mordukhovich,et al.  Variational Analysis of Marginal Functions with Applications to Bilevel Programming , 2012, J. Optim. Theory Appl..

[57]  B. Mordukhovich,et al.  New necessary optimality conditions in optimistic bilevel programming , 2007 .

[58]  Nader Kanzi,et al.  Constraint Qualifications and Stationary Conditions for Mathematical Programming with Non-differentiable Vanishing Constraints , 2018, J. Optim. Theory Appl..

[59]  J. M. Martínez,et al.  On sequential optimality conditions for smooth constrained optimization , 2011 .

[60]  S. M. Robinson Some continuity properties of polyhedral multifunctions , 1981 .

[61]  Patrick Mehlitz,et al.  On the linear independence constraint qualification in disjunctive programming , 2019, Optimization.

[62]  Lei Guo,et al.  Notes on Some Constraint Qualifications for Mathematical Programs with Equilibrium Constraints , 2013, J. Optim. Theory Appl..

[63]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.