Nonproportionality of Scintillator Detectors: Theory and Experiment. II

We report measurements of electron response of scintillators, including data on 29 halides, oxides, organics, and fluorides. We model the data based on combining the theories of: Onsager, to account for formation of excitons and excited activators; Birks, to allow for exciton-exciton annihilation; Bethe-Bloch, to relate electron stopping to its energy; and Landau, to describe how fluctuations in the linear energy deposited (dE/dx) lead to nonproportionality's contribution to resolution. In general there is satisfactory agreement with experiment, in terms of fitting the electron response data and reproducing the literature values of resolution. We find that the electron response curve shapes are more affected by the host lattice than by the activator or its concentration.

[1]  D. Wolski,et al.  Comparative study of avalanche photodiodes with different structures in scintillation detection , 2000, 2000 IEEE Nuclear Science Symposium. Conference Record (Cat. No.00CH37149).

[2]  Anthony J. Peurrung,et al.  Energy nonlinearity in radiation detection materials: Causes and consequences , 2007 .

[3]  G. Hull,et al.  Design of a Facility for Measuring Scintillator Non-Proportionality , 2008, IEEE Transactions on Nuclear Science.

[4]  Arnold Burger,et al.  Strontium and barium iodide high light yield scintillators , 2008 .

[5]  A. Burshtein,et al.  Viscosity dependence of geminate recombination efficiency after bimolecular charge separation , 2002 .

[6]  A. Vasil’ev,et al.  From Luminescence Non-Linearity to Scintillation Non-Proportionality , 2008, IEEE Transactions on Nuclear Science.

[7]  P. Dorenbos,et al.  Nonproportionality and energy resolution of a LaCl/sub 3/:10% Ce/sup 3+/ scintillation crystal , 2003 .

[8]  T. Niedermayr,et al.  Light collection optimization in scintillator-based gamma-ray spectrometers , 2008 .

[9]  J. D. Valentine,et al.  The light yield nonproportionality component of scintillator energy resolution , 1997, IEEE Nuclear Science Symposium Conference Record.

[10]  J. B. Birks,et al.  The Theory and Practice of Scintillation Counting , 1965 .

[11]  P. Dorenbos,et al.  Non-proportionality in the scintillation response and the energy resolution obtainable with scintill , 1995 .

[12]  Woon-Seng Choong,et al.  Performance of a Facility for Measuring Scintillator Non-Proportionality , 2008, IEEE Transactions on Nuclear Science.

[13]  G. Knoll Radiation detection and measurement , 1979 .

[14]  P. Dorenbos,et al.  Non-Proportionality and Energy Resolution of a LaCl :10% Ce Scintillation Crystal , 2003 .

[15]  G. Bizarri,et al.  Eu2+-doped Ba2CsI5, a new high-performance scintillator , 2009 .

[16]  M. Moszynski,et al.  A high-energy resolution observed from a YAP : Ce scintillator , 1999 .

[17]  N. H. Lazar,et al.  Intrinsic Scintillator Resolution , 1956, IRE Transactions on Nuclear Science.

[18]  T. Niedermayr,et al.  Scintillators With Potential to Supersede Lanthanum Bromide , 2009, IEEE Transactions on Nuclear Science.

[19]  M. Moszynski,et al.  A Comparative Study of Undoped NaI Scintillators With Different Purity , 2009, IEEE Transactions on Nuclear Science.

[20]  William W. Moses,et al.  Excitation density, diffusion‐drift, and proportionality in scintillators , 2011 .

[21]  YuLong Xie,et al.  Yield, variance and spatial distribution of electron-hole pairs in CsI , 2011 .

[22]  M. Moszynski,et al.  Scintillation properties of praseodymium doped LuAG scintillator compared to cerium doped LuAG, LSO and LaBr , 2008, 2008 IEEE Nuclear Science Symposium Conference Record.

[23]  Roger G. Williams,et al.  Self-Trapped Excitons , 1993 .

[24]  P. Dorenbos,et al.  High-energy-resolution scintillator: Ce3+ activated LaBr3 , 2000 .

[25]  C. Melcher Perspectives on the future development of new scintillators , 2005 .

[26]  W. Moses,et al.  Scintillator Non-Proportionality: Present Understanding and Future Challenges , 2008, IEEE Transactions on Nuclear Science.

[27]  J. Valentine,et al.  Light yield nonproportionality of CsI(Tl), CsI(Na), and YAP , 1997, 1997 IEEE Nuclear Science Symposium Conference Record.

[28]  L. Eriksson,et al.  Scintillation Non-Proportionality of Lutetium- and Yttrium-Based Silicates and Aluminates , 2009, IEEE Transactions on Nuclear Science.

[29]  P. Dorenbos,et al.  Energy resolution of some new inorganic-scintillator gamma-ray detectors , 2001 .

[30]  S. Kerisit,et al.  Computer simulation of the light yield nonlinearity of inorganic scintillators , 2009 .

[31]  G. Bizarri,et al.  An analytical model of nonproportional scintillator light yield in terms of recombination rates , 2009 .

[32]  R. B. Murray,et al.  Scintillation Response of Activated Inorganic Crystals to Various Charged Particles , 1961 .

[33]  G. H. Narayan,et al.  Electron responses and intrinsic line-widths in NaI(Tl) , 1969 .

[34]  Nonproportionality of electron response using CCT: plastic scintillator. , 2010, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[35]  Jai Singh,et al.  The role of different linear and non-linear channels of relaxation in scintillator non-proportionality , 2009 .

[36]  H. B. Dietrich,et al.  Kinetics of the diffusion of self-trapped holes in alkali halide scintillators , 1972 .

[37]  M. Moszynski,et al.  Energy resolution and non-proportionality of scintillation detectors – new observations , 2010 .

[38]  J. E. Moyal XXX. Theory of ionization fluctuations , 1955 .

[39]  M. Klintenberg,et al.  The Quest for the Ideal Inorganic Scintillator , 2002 .

[40]  S. Curtarolo,et al.  Comparative Study of Nonproportionality and Electronic Band Structures Features in Scintillator Materials , 2009, IEEE Transactions on Nuclear Science.

[41]  M. Moszynski,et al.  Energy resolution and nonlinearity of NaI(Tl), CaF2(Eu), and plastic scintillators measured with the wide-angle Compton-coincidence technique , 2010, IEEE Nuclear Science Symposuim & Medical Imaging Conference.

[42]  Energy and length scales in scintillator nonproportionality , 2007 .

[43]  M. Moszynski,et al.  Intrinsic energy resolution of NaI(Tl) , 2002 .

[44]  P. Rodnyi Physical Processes in Inorganic Scintillators , 2020 .

[45]  P. Iredale The effect of the non-proportional response of NaI(Tl) crystals to electrons upon the resolution for γ-rays , 1961 .

[46]  D. Wolski,et al.  Energy resolution of scintillation detectors readout with large area avalanche photodiodes and photomultipliers , 1998 .

[47]  Woon-Seng Choong,et al.  Nonproportionality of Scintillator Detectors: Theory and Experiment , 2010, IEEE Transactions on Nuclear Science.

[48]  M. Moszynski,et al.  Avalanche photodiodes in scintillation detection , 2003 .

[49]  J. D. Valentine,et al.  The measured electron response nonproportionalities of CaF/sub 2/, BGO, and LSO , 1997 .

[50]  First-Principles Studies and Predictions of Scintillation in Ce-Doped Materials , 2009, IEEE Transactions on Nuclear Science.

[51]  I. V. Khodyuk,et al.  Nonproportional scintillation response of NaI:Tl to low energy x-ray photons and electrons , 2010, 1102.3799.

[52]  G. Bizarri,et al.  Measurements of NaI(Tl) Electron Response: Comparison of Different Samples , 2009, IEEE Transactions on Nuclear Science.

[53]  Andrzej J. Wojtowicz,et al.  Fundamental limits of scintillator performance , 1993 .

[54]  P. Dorenbos,et al.  Development and characterization of highly efficient new cerium doped rare earth halide scintillator materials , 2006 .

[55]  NaI(Tl) electron energy resolution , 2002 .

[56]  C. Powell,et al.  New universal expression for the electron stopping power for energies between 200 eV and 30 keV , 2006 .

[57]  R. B. Murray,et al.  Intrinsic line broadening in NaI(Tl) gamma-ray spectrometers , 1961 .