Orbital-free density functional theory simulations of dislocations in aluminum
暂无分享,去创建一个
Chen Huang | Linda Hung | Ilgyou Shin | E. Carter | A. Ramasubramaniam | L. Hung | Emily A Carter Bd
[1] Nicholas D. M. Hine,et al. Linear-scaling density-functional theory with tens of thousands of atoms: Expanding the scope and scale of calculations with ONETEP , 2009, Comput. Phys. Commun..
[2] Linda Hung,et al. Accurate simulations of metals at the mesoscale: Explicit treatment of 1 million atoms with quantum mechanics , 2009 .
[3] Chen Huang,et al. PAPER www.rsc.org/pccp | Physical Chemistry Chemical Physics Transferable local pseudopotentials for magnesium, aluminum and silicon , 2008 .
[4] Emily A. Carter,et al. Introducing PROFESS: A new program for orbital-free density functional theory calculations , 2008, Comput. Phys. Commun..
[5] Vincent L. Lignères,et al. Analytic form for a nonlocal kinetic energy functional with a density-dependent kernel for orbital-free density functional theory under periodic and Dirichlet boundary conditions , 2008 .
[6] Rajiv K. Kalia,et al. Metascalable molecular dynamics simulation of nano-mechano-chemistry , 2008 .
[7] A. Nakano,et al. Divide-and-conquer density functional theory on hierarchical real-space grids: Parallel implementation and applications , 2008 .
[8] Ashish Sharma,et al. De Novo Ultrascale Atomistic Simulations On High-End Parallel Supercomputers , 2008, Int. J. High Perform. Comput. Appl..
[9] L. Hector,et al. Prediction of dislocation cores in aluminum from density functional theory. , 2008, Physical review letters.
[10] Emily A. Carter,et al. Coupled Quantum–Atomistic and Quantum–Continuum Mechanics Methods in Materials Research , 2007 .
[11] Emily A. Carter,et al. Describing metal surfaces and nanostructures with orbital-free density functional theory , 2007 .
[12] E. Carter,et al. Energetics and kinetics of vacancy diffusion and aggregation in shocked aluminium via orbital-free density functional theory. , 2007, Physical chemistry chemical physics : PCCP.
[13] M. J. Gillan,et al. Order-N first-principles calculations with the conquest code , 2007, Comput. Phys. Commun..
[14] Arash A. Mostofi,et al. ONETEP: linear‐scaling density‐functional theory with local orbitals and plane waves , 2006 .
[15] Efthimios Kaxiras,et al. From Electrons to Finite Elements: A Concurrent Multiscale Approach for Metals , 2005, cond-mat/0506006.
[16] Michele Parrinello,et al. Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach , 2005, Comput. Phys. Commun..
[17] Y. H. Zhao,et al. Compact and dissociated dislocations in aluminum: implications for deformation. , 2005, Physical review letters.
[18] Chris-Kriton Skylaris,et al. Introducing ONETEP: linear-scaling density functional simulations on parallel computers. , 2005, The Journal of chemical physics.
[19] S. G. Srinivasan,et al. Formation mechanism of wide stacking faults in nanocrystalline Al , 2004 .
[20] Emily A. Carter,et al. Transferable local pseudopotentials derived via inversion of the Kohn-Sham equations in a bulk environment , 2004 .
[21] N. Bernstein,et al. Tight-binding calculations of stacking energies and twinnability in fcc metals , 2004 .
[22] Dario Alfe,et al. First-principles simulations of direct coexistence of solid and liquid aluminum , 2003, cond-mat/0308226.
[23] S. G. Srinivasan,et al. Deformation mechanism in nanocrystalline Al: Partial dislocation slip , 2003 .
[24] E. Carter,et al. Orbital-free density functional theory calculations of the properties of Al, Mg and Al–Mg crystalline phases , 2003 .
[25] H. University,et al. Fast method for force computations in electronic structure calculations , 2002, cond-mat/0210389.
[26] Matthieu Verstraete,et al. First-principles computation of material properties: the ABINIT software project , 2002 .
[27] C. Woodward,et al. Flexible Ab initio boundary conditions: simulating isolated dislocations in bcc Mo and Ta. , 2002, Physical review letters.
[28] E. Carter,et al. Orbital-Free Kinetic-Energy Density Functional Theory , 2002 .
[29] S. Glotzer,et al. Molecular and Mesoscale Simulation Methods for Polymer Materials , 2002 .
[30] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[31] P. Madden,et al. Ab initio determination of the melting point of aluminum by thermodynamic integration , 2000 .
[32] N. Govind,et al. Orbital-free kinetic-energy density functionals with a density-dependent kernel , 1999 .
[33] Owen Richmond,et al. An atomistic dislocation mechanism of pressure-dependent plastic flow in aluminum , 1999 .
[34] Emily A. Carter,et al. Orbital-free kinetic-energy functionals for the nearly free electron gas , 1998 .
[35] Siegfried Schmauder,et al. Comput. Mater. Sci. , 1998 .
[36] P. Madden,et al. Thermal properties of the self-interstitial in aluminum: An ab initio molecular-dynamics study , 1997 .
[37] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[38] Madden,et al. Further orbital-free kinetic-energy functionals for ab initio molecular dynamics. , 1996, Physical review. B, Condensed matter.
[39] T. Darden,et al. A smooth particle mesh Ewald method , 1995 .
[40] Smargiassi,et al. Free-energy calculations in solids from first-principles molecular dynamics: Vacancy formation in sodium. , 1995, Physical review. B, Condensed matter.
[41] P. Madden,et al. The dynamic structure of liquid sodium from ab initio simulation , 1994 .
[42] Smargiassi,et al. Orbital-free kinetic-energy functionals for first-principles molecular dynamics. , 1994, Physical review. B, Condensed matter.
[43] F. Perrot. Hydrogen-hydrogen interaction in an electron gas , 1994 .
[44] J. B. Adams,et al. Interatomic Potentials from First-Principles Calculations: The Force-Matching Method , 1993, cond-mat/9306054.
[45] T. Darden,et al. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .
[46] P. Madden,et al. Order N ab initio Molecular Dynamics with an Orbital-Free Density Functional , 1993 .
[47] M. Payne,et al. Atomic and electronic structures of the 90° partial dislocation in silicon , 1992 .
[48] Wang,et al. Kinetic-energy functional of the electron density. , 1992, Physical review. B, Condensed matter.
[49] Martins,et al. Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.
[50] Michael J. Mills,et al. A study of the structure of Lomer and 60° dislocations in aluminium using high-resolution transmission electron microscopy , 1989 .
[51] J. E. Glynn,et al. Numerical Recipes: The Art of Scientific Computing , 1989 .
[52] William H. Press,et al. Numerical recipes in C. The art of scientific computing , 1987 .
[53] M. Finnis,et al. A simple empirical N-body potential for transition metals , 1984 .
[54] M. Baskes,et al. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .
[55] M. Baskes,et al. Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals , 1983 .
[56] S. Papson,et al. “Model” , 1981 .
[57] A. Zunger,et al. Self-interaction correction to density-functional approximations for many-electron systems , 1981 .
[58] B. Alder,et al. THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .
[59] L. Murr. Interfacial phenomena in metals and alloys , 1975 .
[60] D. K. Bowen,et al. The core structure of ½(111) screw dislocations in b.c.c. crystals , 1970 .
[61] W. Kohn,et al. Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .
[62] I. Dillamore,et al. The stacking-fault energy of F.C.C. metals , 1965 .
[63] P. Hohenberg,et al. Inhomogeneous Electron Gas , 1964 .
[64] Edward Teller,et al. On the Stability of Molecules in the Thomas-Fermi Theory , 1962 .
[65] H. B. Huntington. The Elastic Constants of Crystals , 1958 .
[66] J. Bogdanoff,et al. On the Theory of Dislocations , 1950 .
[67] C. Weizsäcker. Zur Theorie der Kernmassen , 1935 .
[68] J. C. Slater,et al. The Thomas-Fermi Method for Metals , 1935 .
[69] E. Fermi. Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente , 1928 .
[70] L. H. Thomas. The calculation of atomic fields , 1927, Mathematical Proceedings of the Cambridge Philosophical Society.