Orbital-free density functional theory simulations of dislocations in aluminum

The core structure of screw and edge dislocations in fcc Al was investigated using orbital-free density functional theory (OF-DFT). Detailed calibrations of kinetic energy density functionals (KEDFs) and local pseudopotentials were performed to reproduce accurately the energies of several phases of bulk Al, as well as the elastic moduli and stacking fault energies of fcc Al. Thereafter, dislocations were modeled with both periodic and non-periodic cells containing a few thousand atoms, and the widths of the dissociated cores were extracted. The results are in good agreement with previous estimates from experiment and theory, further validating OF-DFT with non-local KEDFs as a seamless and accurate tool for simulating large features in main group, nearly-free-electron-like metals at the mesoscale.

[1]  Nicholas D. M. Hine,et al.  Linear-scaling density-functional theory with tens of thousands of atoms: Expanding the scope and scale of calculations with ONETEP , 2009, Comput. Phys. Commun..

[2]  Linda Hung,et al.  Accurate simulations of metals at the mesoscale: Explicit treatment of 1 million atoms with quantum mechanics , 2009 .

[3]  Chen Huang,et al.  PAPER www.rsc.org/pccp | Physical Chemistry Chemical Physics Transferable local pseudopotentials for magnesium, aluminum and silicon , 2008 .

[4]  Emily A. Carter,et al.  Introducing PROFESS: A new program for orbital-free density functional theory calculations , 2008, Comput. Phys. Commun..

[5]  Vincent L. Lignères,et al.  Analytic form for a nonlocal kinetic energy functional with a density-dependent kernel for orbital-free density functional theory under periodic and Dirichlet boundary conditions , 2008 .

[6]  Rajiv K. Kalia,et al.  Metascalable molecular dynamics simulation of nano-mechano-chemistry , 2008 .

[7]  A. Nakano,et al.  Divide-and-conquer density functional theory on hierarchical real-space grids: Parallel implementation and applications , 2008 .

[8]  Ashish Sharma,et al.  De Novo Ultrascale Atomistic Simulations On High-End Parallel Supercomputers , 2008, Int. J. High Perform. Comput. Appl..

[9]  L. Hector,et al.  Prediction of dislocation cores in aluminum from density functional theory. , 2008, Physical review letters.

[10]  Emily A. Carter,et al.  Coupled Quantum–Atomistic and Quantum–Continuum Mechanics Methods in Materials Research , 2007 .

[11]  Emily A. Carter,et al.  Describing metal surfaces and nanostructures with orbital-free density functional theory , 2007 .

[12]  E. Carter,et al.  Energetics and kinetics of vacancy diffusion and aggregation in shocked aluminium via orbital-free density functional theory. , 2007, Physical chemistry chemical physics : PCCP.

[13]  M. J. Gillan,et al.  Order-N first-principles calculations with the conquest code , 2007, Comput. Phys. Commun..

[14]  Arash A. Mostofi,et al.  ONETEP: linear‐scaling density‐functional theory with local orbitals and plane waves , 2006 .

[15]  Efthimios Kaxiras,et al.  From Electrons to Finite Elements: A Concurrent Multiscale Approach for Metals , 2005, cond-mat/0506006.

[16]  Michele Parrinello,et al.  Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach , 2005, Comput. Phys. Commun..

[17]  Y. H. Zhao,et al.  Compact and dissociated dislocations in aluminum: implications for deformation. , 2005, Physical review letters.

[18]  Chris-Kriton Skylaris,et al.  Introducing ONETEP: linear-scaling density functional simulations on parallel computers. , 2005, The Journal of chemical physics.

[19]  S. G. Srinivasan,et al.  Formation mechanism of wide stacking faults in nanocrystalline Al , 2004 .

[20]  Emily A. Carter,et al.  Transferable local pseudopotentials derived via inversion of the Kohn-Sham equations in a bulk environment , 2004 .

[21]  N. Bernstein,et al.  Tight-binding calculations of stacking energies and twinnability in fcc metals , 2004 .

[22]  Dario Alfe,et al.  First-principles simulations of direct coexistence of solid and liquid aluminum , 2003, cond-mat/0308226.

[23]  S. G. Srinivasan,et al.  Deformation mechanism in nanocrystalline Al: Partial dislocation slip , 2003 .

[24]  E. Carter,et al.  Orbital-free density functional theory calculations of the properties of Al, Mg and Al–Mg crystalline phases , 2003 .

[25]  H. University,et al.  Fast method for force computations in electronic structure calculations , 2002, cond-mat/0210389.

[26]  Matthieu Verstraete,et al.  First-principles computation of material properties: the ABINIT software project , 2002 .

[27]  C. Woodward,et al.  Flexible Ab initio boundary conditions: simulating isolated dislocations in bcc Mo and Ta. , 2002, Physical review letters.

[28]  E. Carter,et al.  Orbital-Free Kinetic-Energy Density Functional Theory , 2002 .

[29]  S. Glotzer,et al.  Molecular and Mesoscale Simulation Methods for Polymer Materials , 2002 .

[30]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[31]  P. Madden,et al.  Ab initio determination of the melting point of aluminum by thermodynamic integration , 2000 .

[32]  N. Govind,et al.  Orbital-free kinetic-energy density functionals with a density-dependent kernel , 1999 .

[33]  Owen Richmond,et al.  An atomistic dislocation mechanism of pressure-dependent plastic flow in aluminum , 1999 .

[34]  Emily A. Carter,et al.  Orbital-free kinetic-energy functionals for the nearly free electron gas , 1998 .

[35]  Siegfried Schmauder,et al.  Comput. Mater. Sci. , 1998 .

[36]  P. Madden,et al.  Thermal properties of the self-interstitial in aluminum: An ab initio molecular-dynamics study , 1997 .

[37]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[38]  Madden,et al.  Further orbital-free kinetic-energy functionals for ab initio molecular dynamics. , 1996, Physical review. B, Condensed matter.

[39]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[40]  Smargiassi,et al.  Free-energy calculations in solids from first-principles molecular dynamics: Vacancy formation in sodium. , 1995, Physical review. B, Condensed matter.

[41]  P. Madden,et al.  The dynamic structure of liquid sodium from ab initio simulation , 1994 .

[42]  Smargiassi,et al.  Orbital-free kinetic-energy functionals for first-principles molecular dynamics. , 1994, Physical review. B, Condensed matter.

[43]  F. Perrot Hydrogen-hydrogen interaction in an electron gas , 1994 .

[44]  J. B. Adams,et al.  Interatomic Potentials from First-Principles Calculations: The Force-Matching Method , 1993, cond-mat/9306054.

[45]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[46]  P. Madden,et al.  Order N ab initio Molecular Dynamics with an Orbital-Free Density Functional , 1993 .

[47]  M. Payne,et al.  Atomic and electronic structures of the 90° partial dislocation in silicon , 1992 .

[48]  Wang,et al.  Kinetic-energy functional of the electron density. , 1992, Physical review. B, Condensed matter.

[49]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[50]  Michael J. Mills,et al.  A study of the structure of Lomer and 60° dislocations in aluminium using high-resolution transmission electron microscopy , 1989 .

[51]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[52]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[53]  M. Finnis,et al.  A simple empirical N-body potential for transition metals , 1984 .

[54]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[55]  M. Baskes,et al.  Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals , 1983 .

[56]  S. Papson,et al.  “Model” , 1981 .

[57]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[58]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[59]  L. Murr Interfacial phenomena in metals and alloys , 1975 .

[60]  D. K. Bowen,et al.  The core structure of ½(111) screw dislocations in b.c.c. crystals , 1970 .

[61]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[62]  I. Dillamore,et al.  The stacking-fault energy of F.C.C. metals , 1965 .

[63]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[64]  Edward Teller,et al.  On the Stability of Molecules in the Thomas-Fermi Theory , 1962 .

[65]  H. B. Huntington The Elastic Constants of Crystals , 1958 .

[66]  J. Bogdanoff,et al.  On the Theory of Dislocations , 1950 .

[67]  C. Weizsäcker Zur Theorie der Kernmassen , 1935 .

[68]  J. C. Slater,et al.  The Thomas-Fermi Method for Metals , 1935 .

[69]  E. Fermi Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente , 1928 .

[70]  L. H. Thomas The calculation of atomic fields , 1927, Mathematical Proceedings of the Cambridge Philosophical Society.

[71]  A. Götte,et al.  Metall , 1897 .