Carbonate-based zeolitic imidazolate framework for highly selective CO2 capture.

In this study, we report the formation of a new crystal structure, ZIF-CO3-1, which results from the reaction of Zn(2+), 2-methylimidazole, and carbonate. ZIF-CO3-1 can be synthesized solvothermally in N,N-dimethylformamide (DMF)/water (H2O) or by utilizing of CO2 gas at various temperatures in DMF/H2O or H2O. This reaction selectively consumes CO2 because CO2 is incorporated in the ZIF as carbonate. CO2 can be quantitatively released by acidifying the ZIF. Powder X-ray diffraction, single-crystal X-ray diffraction, FTIR spectroscopy, scanning electron microscopy, elemental analysis, and thermogravimetric analysis were used to characterize the ZIF structure. ZIF-CO3-1 (chemical formula C9H10N4O3Zn2), crystallizes in the orthorhombic crystal system with noncentrosymmetric space group Pba2.

[1]  R. H. Borgwardt Calcination kinetics and surface area of dispersed limestone particles , 1985 .

[2]  Andrew D. Bond,et al.  Solvothermal synthesis of new metal organic framework structures in the zinc–terephthalic acid–dimethyl formamide system , 2005 .

[3]  L. Brammer,et al.  Solvent hydrolysis leads to an unusual Cu(II) metal–organic framework , 2006 .

[4]  François-Xavier Coudert,et al.  Zeolitic imidazole frameworks: structural and energetics trends compared with their zeolite analogues , 2009 .

[5]  Jürgen Caro,et al.  Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. , 2009, Journal of the American Chemical Society.

[6]  Jun Zhang,et al.  Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas , 2008 .

[7]  E. Sherman,et al.  Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidizolate frameworks. , 2012, Dalton transactions.

[8]  D. Cazorla-Amorós,et al.  Carbon dioxide-calcium oxide surface and bulk reactions: thermodynamic and kinetic approach , 1991 .

[9]  D. D’Alessandro,et al.  Enhanced carbon dioxide capture upon incorporation of N,N′-dimethylethylenediamine in the metal–organic framework CuBTTri , 2011 .

[10]  Mircea Dincă,et al.  Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.

[11]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[12]  A. Steinfeld,et al.  Kinetic analysis of the carbonation reactions for the capture of CO2 from air via the Ca(OH)2–CaCO3–CaO solar thermochemical cycle , 2007 .

[13]  Akemi Yasukawa,et al.  Morphology control and texture of hematite particles by dimethylformamide in forced hydrolysis reaction , 1998 .

[14]  A. Bjerre,et al.  Thermal decomposition of dilute aqueous formic acid solutions , 1992 .

[15]  Gary T. Rochelle,et al.  Innovative Absorber/Stripper Configurations for CO2 Capture by Aqueous Monoethanolamine , 2006 .

[16]  Shuji Himeno,et al.  Characterization and selectivity for methane and carbon dioxide adsorption on the all-silica DD3R zeolite , 2007 .

[17]  David W. Keith,et al.  Low-energy sodium hydroxide recovery for CO2 capture from atmospheric air—Thermodynamic analysis , 2009 .

[18]  Michael O'Keeffe,et al.  Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. , 2010, Accounts of chemical research.

[19]  P. Savage,et al.  Role of water in formic acid decomposition , 1998 .

[20]  Hongming Yuan,et al.  Photoluminescent metal-organic polymer constructed from trimetallic clusters and mixed carboxylates. , 2003, Inorganic chemistry.

[21]  Michael O’Keeffe,et al.  Exceptional chemical and thermal stability of zeolitic imidazolate frameworks , 2006, Proceedings of the National Academy of Sciences.

[22]  Gary T. Rochelle,et al.  Amine Scrubbing for CO2 Capture , 2009, Science.

[23]  Michael O'Keeffe,et al.  Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. , 2009, Journal of the American Chemical Society.

[24]  Omar M Yaghi,et al.  Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). , 2007, Journal of the American Chemical Society.

[25]  Henry W. Pennline,et al.  Semi-batch absorption and regeneration studies for CO2 capture by aqueous ammonia , 2005 .

[26]  San-Jun Han,et al.  Carbon Dioxide Capture Using Calcium Hydroxide Aqueous Solution as the Absorbent , 2011 .

[27]  Hong-Cai Zhou,et al.  Recent advances in carbon dioxide capture with metal‐organic frameworks , 2012 .

[28]  N. Matubayasi,et al.  Kinetic and equilibrium study on formic acid decomposition in relation to the water-gas-shift reaction. , 2006, The journal of physical chemistry. A.

[29]  R. Stuart Haszeldine,et al.  Carbon Capture and Storage: How Green Can Black Be? , 2009, Science.

[30]  Hua Hou,et al.  Water-catalyzed mechanism for the pyrolysis of formic acid , 1999 .

[31]  Takahiro Kuroda,et al.  Formation of a Y-Type Zeolite Membrane on a Porous α-Alumina Tube for Gas Separation , 1997 .

[32]  S. Sircar,et al.  Removal and recovery of compressed CO2 from flue gas by a novel thermal swing chemisorption process , 2008 .

[33]  Ulrich Müller,et al.  Industrial applications of metal-organic frameworks. , 2009, Chemical Society reviews.

[34]  R. Frost,et al.  Infrared and infrared emission spectroscopy of the zinc carbonate mineral smithsonite. , 2008, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[35]  Alírio E. Rodrigues,et al.  Adsorption Equilibrium of Methane, Carbon Dioxide, and Nitrogen on Zeolite 13X at High Pressures , 2004 .

[36]  Wei Zhou,et al.  Hydrogen storage in a prototypical zeolitic imidazolate framework-8. , 2007, Journal of the American Chemical Society.

[37]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[38]  T. Yildirim,et al.  Hydrogen and Methane Adsorption in Metal−Organic Frameworks: A High-Pressure Volumetric Study , 2007 .

[39]  P. Webley,et al.  Competition of CO2/H2O in adsorption based CO2 capture , 2009 .

[40]  D. D’Alessandro,et al.  Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine. , 2009, Journal of the American Chemical Society.

[41]  I. Tuñón,et al.  The mechanism of formamide hydrolysis in water from ab initio calculations and simulations. , 2005, Chemistry.

[42]  Yi He,et al.  Capturing CO2 into the precipitate of a phase-changing solvent after absorption. , 2014, Environmental science & technology.

[43]  Tao Wu,et al.  New Zeolitic Imidazolate Frameworks: From Unprecedented Assembly of Cubic Clusters to Ordered Cooperative Organization of Complementary Ligands , 2008 .

[44]  A. Cheetham,et al.  Chemical structure, network topology, and porosity effects on the mechanical properties of Zeolitic Imidazolate Frameworks , 2010, Proceedings of the National Academy of Sciences.

[45]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[46]  R. Quadrelli,et al.  The energy-climate challenge: Recent trends in CO2 emissions from fuel combustion , 2007 .

[47]  A. Benin,et al.  Virtual high throughput screening confirmed experimentally: porous coordination polymer hydration. , 2009, Journal of the American Chemical Society.

[48]  Aldo Steinfeld,et al.  CO2 capture from atmospheric air via consecutive CaO-carbonation and CaCO3-calcination cycles in a fluidized-bed solar reactor , 2009 .

[49]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[50]  S. Rigby,et al.  Solvent hydrolysis and templating effects in the synthesis of metal-organic frameworks , 2005 .

[51]  E. Granite,et al.  Photochemical Removal of Mercury from Flue Gas , 2002 .

[52]  Bo Wang,et al.  Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites , 2009, Proceedings of the National Academy of Sciences.

[53]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[54]  Frank Zeman,et al.  Energy and material balance of CO2 capture from ambient air. , 2007, Environmental science & technology.

[55]  S. Rohani,et al.  In situ high pressure study of ZIF-8 by FTIR spectroscopy. , 2011, Chemical communications.

[56]  Michael O'Keeffe,et al.  High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture , 2008, Science.

[57]  Jun Zhang,et al.  Capture of CO2 from high humidity flue gas by vacuum swing adsorption with zeolite 13X , 2008 .