Control of human locomotion under various task constraints

The goal of this study was to identify the control mechanism used for locomotion pointing regulation under different external temporal constraints. Subjects (n=8) had to walk on a treadmill through a number of virtual hallways and cross a pair of gliding doors that opened and closed at a constant preset frequency (0.5 Hz or 1 Hz). Crossing performance, step durations, and step lengths were used as dependent measures. The results revealed the regulation of locomotion occurred earlier and was more pronounced at 0.5 Hz than at 1 Hz, making performance better at 0.5 Hz. Nevertheless at the two frequencies the control mechanism appears similar; it is grounded on information movement coupling. This control mechanism allows for the production of specific behavior according to the task constraints.