Differentially expressed long noncoding RNAs in RAW264.7 macrophages during Brucella infection and functional analysis on the bacterial intracellular replication

[1]  C. Ding,et al.  Characterization of the main immunogenic proteins in Brucella infection for their application in diagnosis of brucellosis. , 2020, Comparative immunology, microbiology and infectious diseases.

[2]  C. Ding,et al.  Brucella Infection Regulates Thioredoxin-Interacting Protein Expression to Facilitate Intracellular Survival by Reducing the Production of Nitric Oxide and Reactive Oxygen Species , 2019, The Journal of Immunology.

[3]  Xiaofeng Liu,et al.  HMGB1 release from trophoblasts contributes to inflammation during Brucella melitensis infection , 2019, Cellular microbiology.

[4]  J. Goedert,et al.  CCR5AS lncRNA variation differentially regulates CCR5, influencing HIV disease outcome , 2019, Nature Immunology.

[5]  C. Ding,et al.  Identification of a novel, small, conserved hypothetical protein involved in Brucella abortus virulence by modifying the expression of multiple genes , 2018, Transboundary and emerging diseases.

[6]  R. Flavell,et al.  The Translation of Non-Canonical Open Reading Frames Controls Mucosal Immunity , 2018, Nature.

[7]  L. Rénia,et al.  Organ-Specific Fate, Recruitment, and Refilling Dynamics of Tissue-Resident Macrophages during Blood-Stage Malaria. , 2018, Cell reports.

[8]  C. Qing,et al.  The Expression of lncRNA NEAT1 in Human Tuberculosis and Its Antituberculosis Effect , 2018, BioMed research international.

[9]  A. Bielawska-Drózd,et al.  Brucella – Virulence Factors, Pathogenesis and Treatment , 2018, Polish journal of microbiology.

[10]  Hao Dong,et al.  Transcriptome analysis of gene expression profiling of infected macrophages between Brucella suis 1330 and live attenuated vaccine strain S2 displays mechanistic implication for regulation of virulence. , 2018, Microbial pathogenesis.

[11]  A. Frankish,et al.  Towards a complete map of the human long non-coding RNA transcriptome , 2018, Nature Reviews Genetics.

[12]  N. Munshi,et al.  Drugging the lncRNA MALAT1 via LNA gapmeR ASO inhibits gene expression of proteasome subunits and triggers anti-multiple myeloma activity , 2018, Leukemia.

[13]  Yong Huang,et al.  Brucella Downregulates Tumor Necrosis Factor-α to Promote Intracellular Survival via Omp25 Regulation of Different MicroRNAs in Porcine and Murine Macrophages , 2018, Front. Immunol..

[14]  J. Gu,et al.  Energy stress-induced lncRNA FILNC1 represses c-Myc-mediated energy metabolism and inhibits renal tumor development , 2017, Nature Communications.

[15]  W. Hahn,et al.  Complementary information derived from CRISPR Cas9 mediated gene deletion and suppression , 2017, Nature Communications.

[16]  R. Einspanier,et al.  A Long Journey Ahead: Long Non-coding RNAs in Bacterial Infections , 2017, Front. Cell. Infect. Microbiol..

[17]  Nancy D. Marin,et al.  The role of CD30 and CD153 (CD30L) in the anti-mycobacterial immune response. , 2017, Tuberculosis.

[18]  N. Thomson,et al.  Brucella abortus Strain 2308 Wisconsin Genome: Importance of the Definition of Reference Strains , 2016, Front. Microbiol..

[19]  R. Tsolis,et al.  Brucella spp. Virulence Factors and Immunity. , 2016, Annual review of animal biosciences.

[20]  Hui Zhang,et al.  Immunization of BALB/c mice with Brucella abortus 2308ΔwbkA confers protection against wild-type infection , 2015, Journal of veterinary science.

[21]  J. Celli The changing nature of the Brucella‐containing vacuole , 2015, Cellular microbiology.

[22]  P. de Figueiredo,et al.  Pathogenesis and Immunobiology of Brucellosis Review of Brucella e Host Interactions 80 81 , 2015 .

[23]  P. Kapranov,et al.  The Landscape of long noncoding RNA classification. , 2015, Trends in genetics : TIG.

[24]  Yufei Wang,et al.  Identification of a Novel Small Non-Coding RNA Modulating the Intracellular Survival of Brucella melitensis , 2015, Front. Microbiol..

[25]  E. Moreno Retrospective and prospective perspectives on zoonotic brucellosis , 2014, Front. Microbiol..

[26]  E. Podack,et al.  CD30: from basic research to cancer therapy , 2013, Immunologic research.

[27]  M. Zhang,et al.  Microarray-Based Identification of Differentially Expressed Genes in Intracellular Brucella abortus within RAW264.7 Cells , 2013, PloS one.

[28]  Yi Zhao,et al.  Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts , 2013, Nucleic acids research.

[29]  Werner Müller,et al.  CD4+ T Cell-derived IL-10 Promotes Brucella abortus Persistence via Modulation of Macrophage Function , 2013, PLoS pathogens.

[30]  Y. Yoshikai,et al.  CD30L/CD30 is critical for maintenance of IL-17A-producing γδ T cells bearing Vγ6 in mucosa-associated tissues in mice , 2013, Mucosal Immunology.

[31]  R. L. Santos,et al.  Pathogenesis and pathobiology of brucellosis in livestock. , 2013, Revue scientifique et technique.

[32]  Howard Y. Chang,et al.  Control of somatic tissue differentiation by the long non-coding RNA TINCR , 2012, Nature.

[33]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[34]  Nadav S. Bar,et al.  Landscape of transcription in human cells , 2012, Nature.

[35]  Ke Zheng,et al.  MicroRNA Expression Profile in RAW264.7 cells in Response to Brucella melitensis Infection , 2012, International journal of biological sciences.

[36]  Chaolin Zhang,et al.  The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. , 2012, Cell reports.

[37]  Chuangfu Chen,et al.  Autophagy favors Brucella melitensis survival in infected macrophages , 2012, Cellular & Molecular Biology Letters.

[38]  Y. He,et al.  Analyses of Brucella Pathogenesis, Host Immunity, and Vaccine Targets using Systems Biology and Bioinformatics , 2011, Front. Cell. Inf. Microbio..

[39]  Howard Y. Chang,et al.  Molecular mechanisms of long noncoding RNAs. , 2011, Molecular cell.

[40]  Cole Trapnell,et al.  Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. , 2011, Genes & development.

[41]  Manolis Kellis,et al.  PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions , 2011, Bioinform..

[42]  R. L. Santos,et al.  Laboratory Animal Models for Brucellosis Research , 2011, Journal of biomedicine & biotechnology.

[43]  G. Ferguson,et al.  Importance of Lipopolysaccharide and Cyclic β-1,2-Glucans in Brucella-Mammalian Infections , 2010, International journal of microbiology.

[44]  J. P. Mol,et al.  Pathogenesis of bovine brucellosis. , 2010, Veterinary journal.

[45]  Cole Trapnell,et al.  Role of Rodent Secondary Motor Cortex in Value-based Action Selection Nih Public Access Author Manuscript , 2006 .

[46]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[47]  Matthew D. Young,et al.  Gene ontology analysis for RNA-seq: accounting for selection bias , 2010, Genome Biology.

[48]  Gregory J. Hannon,et al.  Small RNAs as Guardians of the Genome , 2009, Cell.

[49]  S. Olsen,et al.  An Aerosolized Brucella spp. Challenge Model for Laboratory Animals , 2007, Zoonoses and public health.

[50]  Yong Zhang,et al.  CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine , 2007, Nucleic Acids Res..

[51]  Tao Cai,et al.  Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary , 2005, Bioinform..

[52]  J. Celli,et al.  Brucella Evades Macrophage Killing via VirB-dependent Sustained Interactions with the Endoplasmic Reticulum , 2003, The Journal of experimental medicine.

[53]  G. Splitter,et al.  Microarray Analysis of mRNA Levels from RAW264.7 Macrophages Infected with Brucella abortus , 2003, Infection and Immunity.

[54]  J. Oliaro,et al.  The innate immune response against Brucella in humans. , 2002, Veterinary microbiology.

[55]  J. Weitzman The mouse genome , 2002, Genome Biology.

[56]  M. Entman,et al.  Mast cells and macrophages in normal C57/BL/6 mice , 2002, Histochemistry and Cell Biology.

[57]  M. Watarai,et al.  Modulation of Brucella‐induced macropinocytosis by lipid rafts mediates intracellular replication , 2002, Cellular microbiology.

[58]  D. O’Callaghan,et al.  Brucellosis: a worldwide zoonosis. , 2001, Current opinion in microbiology.

[59]  G. Arenas,et al.  Intracellular Trafficking of Brucella abortus in J774 Macrophages , 2000, Infection and Immunity.

[60]  J. Wilson,et al.  CHARACTERISTICS OF CARBON DIOXIDE-INDEPENDENT CULTURES OF BRUCELLA ABORTUS ISOLATED FROM CATTLE VACCINATED WITH STRAIN 19. , 1965, The Journal of infectious diseases.