The Cotorsion Dimension of Modules and Rings

In this paper, we introduce a dimension, called the cotorsion dimension, for modules and rings. The relations between the cotorsion dimension and other dimensions are discussed. Various results are developed, some extending known results.

[1]  I. Herzog,et al.  Sigma-cotorsion rings , 2005 .

[2]  Nanqing Ding,et al.  NOTES ON COTORSION MODULES , 2005 .

[3]  Sang Bum Lee h-Divisible Modules , 2003 .

[4]  P. Rothmaler WHEN ARE PURE-INJECTIVE ENVELOPES OF FLAT MODULES FLAT? , 2002 .

[5]  E. Enochs,et al.  All Modules Have Flat Covers , 2001 .

[6]  Jinzhong Xu Flat covers of modules , 1996 .

[7]  Jianlong Chen,et al.  The flat dimensions of injective modules , 1993 .

[8]  Overtoun M. G. Jenda,et al.  h-Divisible and Cotorsion Modules over One-Dimensional Gorenstein Rings , 1993 .

[9]  A. Shamsuddin Finite normalizing extensions , 1992 .

[10]  E. Enochs Flat covers and flat cotorsion modules , 1984 .

[11]  Luc Bonami On the structure of skew group rings , 1984 .

[12]  D. Passman It's essentially Maschke's theorem , 1983 .

[13]  Eben Matlis Commutative Coherent Rings , 1982, Canadian Journal of Mathematics.

[14]  E. Enochs Injective and flat covers, envelopes and resolvents , 1981 .

[15]  Richard Resco Radicals of finite normalizing extensions , 1981 .

[16]  J. Rotman An Introduction to Homological Algebra , 1979 .

[17]  V. Ramamurthi On the injectivity and flatness of certain cyclic modules , 1975 .

[18]  F. L. Sandomierski Homological dimension under change of rings , 1973 .

[19]  R. Ware Endomorphism rings of projective modules , 1971 .

[20]  C. U. Jensen On the vanishing of lim←(i) , 1970 .

[21]  S. Chase Direct products of modules , 1960 .